CVD 0.8
Classes | Namespaces | Modules | Functions | Variables
Computer Vision

Functions and classes to support common computer vision concepts and operations. More...

Classes

class  Camera::Linear
 A linear camera with zero skew. More...
class  Camera::Cubic
 A camera with zero skew and cubic distortion. More...
class  Camera::Quintic
 A camera with zero skew and quintic distortion. More...
class  Camera::Harris
 A Camera with zero skew and Harris distortion. More...
class  Camera::ArcTan
 A Camera for lenses which attempt to maintain a constant view angle per pixel. More...
struct  CVD::Harris::HarrisScore
 Compute the corner score according to Harris. More...
struct  CVD::Harris::ShiTomasiScore
 Compute the score according to Shi-Tomasi. More...
struct  CVD::Harris::PosInserter
 Used to save corner positions from harrislike_corner_detect. More...
struct  CVD::Harris::PairInserter
 Used to save corner positions and scores from harrislike_corner_detect. More...
struct  CVD::Morphology::BasicGray< T, Cmp >
 A helper class for performing basic grayscale morphology on an image. More...
class  CVD::Morphology::Erode< T >
 Class for performing greyscale erosion. More...
class  CVD::Morphology::Dilate< T >
 Class for performing greyscale dilation. More...
struct  CVD::Morphology::BasicGrayByte
 A helper class for performing basic grayscale morphology on an image of bytes. More...
class  CVD::Morphology::Erode< byte >
 Class for performing greyscale erosion of bytes. More...
class  CVD::Morphology::Dilate< byte >
 Class for performing greyscale dilation of bytes. More...
class  CVD::Morphology::Percentile< byte >
 Class for performing percentile filtering of bytes. More...
class  CVD::Morphology::Median< byte >
 Class for performing percentile filtering of bytes. More...
struct  CVD::Morphology::BasicBinary< T >
 Class for performing binary morphology. More...
struct  CVD::Morphology::BinaryErode< T >
 Class for performing binary erosion. More...
struct  CVD::Morphology::BinaryDilate< T >
 Class for performing binary dilation. More...
struct  CVD::Morphology::BinaryMedian< T >
 Class for performing binary median filtering. More...
struct  CVD::multiplyBy< T >
 a functor multiplying pixels with constant value. More...

Namespaces

namespace  Camera
namespace  CVD::Morphology

Modules

 Efficient Second Order Minimization (ESM)

Functions

void CVD::connected_components (const std::vector< ImageRef > &v, std::vector< std::vector< ImageRef > > &r)
template<class T >
CVD::gaussianKernel (std::vector< T > &k, T maxval, double stddev)
template<class S , class T >
CVD::scaleKernel (const std::vector< S > &k, std::vector< T > &scaled, T maxval)
template<class T >
void CVD::convolveWithBox (const BasicImage< T > &I, BasicImage< T > &J, ImageRef hwin)
void CVD::fast_nonmax (const BasicImage< byte > &im, const std::vector< ImageRef > &corners, int barrier, std::vector< ImageRef > &max_corners)
void CVD::fast_nonmax_with_scores (const BasicImage< byte > &im, const std::vector< ImageRef > &corners, int barrier, std::vector< std::pair< ImageRef, int > > &max_corners)
void CVD::fast_corner_detect_7 (const BasicImage< byte > &im, std::vector< ImageRef > &corners, int barrier)
void CVD::fast_corner_score_7 (const SubImage< byte > &i, const std::vector< ImageRef > &corners, int b, std::vector< int > &scores)
void CVD::fast_corner_detect_8 (const BasicImage< byte > &im, std::vector< ImageRef > &corners, int barrier)
void CVD::fast_corner_score_8 (const SubImage< byte > &i, const std::vector< ImageRef > &corners, int b, std::vector< int > &scores)
void CVD::fast_corner_detect_9 (const BasicImage< byte > &im, std::vector< ImageRef > &corners, int barrier)
void CVD::fast_corner_score_9 (const SubImage< byte > &i, const std::vector< ImageRef > &corners, int b, std::vector< int > &scores)
void CVD::fast_corner_detect_9_nonmax (const BasicImage< byte > &im, std::vector< ImageRef > &max_corners, int barrier)
void CVD::fast_corner_detect_10 (const BasicImage< byte > &im, std::vector< ImageRef > &corners, int barrier)
void CVD::fast_corner_score_10 (const SubImage< byte > &i, const std::vector< ImageRef > &corners, int b, std::vector< int > &scores)
void CVD::fast_corner_detect_11 (const BasicImage< byte > &im, std::vector< ImageRef > &corners, int barrier)
void CVD::fast_corner_score_11 (const SubImage< byte > &i, const std::vector< ImageRef > &corners, int b, std::vector< int > &scores)
void CVD::fast_corner_detect_12 (const BasicImage< byte > &im, std::vector< ImageRef > &corners, int barrier)
void CVD::fast_corner_score_12 (const SubImage< byte > &i, const std::vector< ImageRef > &corners, int b, std::vector< int > &scores)
template<class It >
void CVD::haar1D (It from, It to)
template<class It >
void CVD::inv_haar1D (It from, It to)
template<class It >
void CVD::haar1D (It from, int size)
template<class It >
void CVD::inv_haar1D (It from, int size)
template<class It >
void CVD::haar2D (It from, const int width, const int height, int stride=-1)
template<class T >
void CVD::haar2D (SubImage< T > &I)
template<class Score , class Inserter , class C , class B >
void CVD::harrislike_corner_detect (const SubImage< B > &i, C &c, unsigned int N, float blur, float sigmas, BasicImage< float > &xx, BasicImage< float > &xy, BasicImage< float > &yy)
template<class S , class D >
void CVD::integral_image (const SubImage< S > &in, SubImage< D > &out)
template<class S , class D >
Image< D > CVD::integral_image (const BasicImage< S > &from)
double CVD::interpolate_extremum (double d1, double d2, double d3)
TooN::Vector< 2 > CVD::interpolate_extremum (double I__1__1, double I__1_0, double I__1_1, double I_0__1, double I_0_0, double I_0_1, double I_1__1, double I_1_0, double I_1_1)
template<class I >
TooN::Vector< 2 > CVD::interpolate_extremum (const SubImage< I > &i, ImageRef p)
std::pair< TooN::Vector
< 2 >, double > 
CVD::interpolate_extremum_value (double I__1__1, double I__1_0, double I__1_1, double I_0__1, double I_0_0, double I_0_1, double I_1__1, double I_1_0, double I_1_1)
template<class I >
std::pair< TooN::Vector
< 2 >, double > 
CVD::interpolate_extremum_value (const SubImage< I > &i, ImageRef p)
template<class Accumulator , class T >
void CVD::morphology (const SubImage< T > &in, const std::vector< ImageRef > &selem, const Accumulator &a_, SubImage< T > &out)
Image< T > CVD::morphology (const SubImage< T > &in, const std::vector< ImageRef > &selem, const Accumulator &a_)
void CVD::nonmax_suppression_strict (const std::vector< ImageRef > &corners, const std::vector< int > &scores, std::vector< ImageRef > &nmax_corners)
void CVD::nonmax_suppression (const std::vector< ImageRef > &corners, const std::vector< int > &scores, std::vector< ImageRef > &nmax_corners)
void CVD::nonmax_suppression_with_scores (const std::vector< ImageRef > &corners, const std::vector< int > &socres, std::vector< std::pair< ImageRef, int > > &max_corners)
template<class C >
Image< TooN::Matrix< 2 > > CVD::dense_tensor_vote_gradients (const SubImage< C > &image, double sigma, double ratio, double cutoff=0.001, unsigned int num_divs=4096)
template<class C >
void CVD::twoThirdsSample (const SubImage< C > &in, SubImage< C > &out)
template<class C >
Image< C > CVD::twoThirdsSample (const SubImage< C > &from)
template<class T >
void CVD::halfSample (const BasicImage< T > &in, BasicImage< T > &out)
template<class T >
Image< T > CVD::halfSample (const BasicImage< T > &in)
template<class T >
Image< T > CVD::halfSample (Image< T > in, unsigned int octaves)
template<class T >
void CVD::threshold (BasicImage< T > &im, const T &minimum, const T &hi)
template<class T >
void CVD::stats (const BasicImage< T > &im, T &mean, T &stddev)
template<class S , class T >
void CVD::gradient (const BasicImage< S > &im, BasicImage< T > &out)

Variables

const ImageRef CVD::fast_pixel_ring [16]

Detailed Description

Functions and classes to support common computer vision concepts and operations.


Function Documentation

void CVD::connected_components ( const std::vector< ImageRef > &  v,
std::vector< std::vector< ImageRef > > &  r 
)

Find the connected components of the input, using 4-way floodfill.

This is implemented as the graph based algorithm. There is no restriction on the input except that positions can not be INT_MIN or INT_MAX.

The pixels in the resulting segments are not sorted.

Parameters:
vList of pixel positions
rList of segments.
template<class T >
T CVD::gaussianKernel ( std::vector< T > &  k,
maxval,
double  stddev 
)

creates a Gaussian kernel with given maximum value and standard deviation.

All elements of the passed vector are filled up, therefore the vector defines the size of the computed kernel. The normalizing value is returned.

Parameters:
kvector of T's holds the kernel values
maxvalthe maximum value to be used
stddevstandard deviation of the kernel
Returns:
the sum of the kernel elements for normalization

Definition at line 48 of file convolution.h.

template<class S , class T >
T CVD::scaleKernel ( const std::vector< S > &  k,
std::vector< T > &  scaled,
maxval 
)

scales a GaussianKernel to a different maximum value.

The new kernel is returned in scaled. The new normalizing value is returned.

Parameters:
kinput kernel
scaledoutput vector to hold the resulting kernel
maxvalthe new maximum value
Returns:
sum of the new kernel elements for normalization

Definition at line 73 of file convolution.h.

template<class T >
void CVD::convolveWithBox ( const BasicImage< T > &  I,
BasicImage< T > &  J,
ImageRef  hwin 
)

convolves an image with a box of given size.

Parameters:
Iinput image, modified in place
hwinwindow size, this is half of the box size

Definition at line 151 of file convolution.h.

References CVD::assign_multiple(), CVD::SubImage< T >::data(), CVD::differences(), CVD::SubImage< T >::size(), CVD::ImageRef::x, CVD::ImageRef::y, and CVD::zeroPixels().

void CVD::fast_nonmax ( const BasicImage< byte > &  im,
const std::vector< ImageRef > &  corners,
int  barrier,
std::vector< ImageRef > &  max_corners 
)

Perform non-maximal suppression on a set of FAST features.

This cleans up areas where there are multiple adjacent features, using a computed score function to leave only the 'best' features. This function is typically called immediately after a call to fast_corner_detect() (or one of its variants). This uses the scoring function given in the paper given in fast_corner_detect_9:

Parameters:
imThe image used to generate the FAST features
cornersThe FAST features previously detected (e.g. by calling fast_corner_detect())
barrierThe barrier used to calculate the score, which should be the same as that passed to fast_corner_detect()
max_cornersVector to be filled with the new list of locally maximal corners.
void CVD::fast_nonmax_with_scores ( const BasicImage< byte > &  im,
const std::vector< ImageRef > &  corners,
int  barrier,
std::vector< std::pair< ImageRef, int > > &  max_corners 
)

Perform non-maximal suppression on a set of FAST features, also returning the score for each remaining corner.

This function cleans up areas where there are multiple adjacent features, using a computed score function to leave only the 'best' features. This function is typically called immediately after a call to fast_corner_detect() (or one of its variants).

Parameters:
imThe image used to generate the FAST features
cornersThe FAST features previously detected (e.g. by calling fast_corner_detect())
barrierThe barrier used to calculate the score, which should be the same as that passed to fast_corner_detect()
max_cornersVector to be filled with the new list of locally maximal corners, and their scores. non_maxcorners[i].first gives the location and non_maxcorners[i].second gives the score (higher is better).
void CVD::fast_corner_detect_7 ( const BasicImage< byte > &  im,
std::vector< ImageRef > &  corners,
int  barrier 
)

Perform tree based 7 point FAST feature detection.

This is more like an edge detector. If you use this, please cite the paper given in fast_corner_detect_9

Parameters:
imThe input image
cornersThe resulting container of corner locations
barrierCorner detection threshold
void CVD::fast_corner_score_7 ( const SubImage< byte > &  i,
const std::vector< ImageRef > &  corners,
int  b,
std::vector< int > &  scores 
)

Compute the 7 point score (as the maximum threshold at which the point will still be detected) for a std::vector of features.

Parameters:
imThe input image
cornersThe resulting container of corner locations
barrierInitial corner detection threshold. Using the same threshold as for corner detection will produce the quickest results, but any lower value (e.g. 0) will produce correct results.
void CVD::fast_corner_detect_8 ( const BasicImage< byte > &  im,
std::vector< ImageRef > &  corners,
int  barrier 
)

Perform tree based 8 point FAST feature detection.

This is more like an edge detector. If you use this, please cite the paper given in fast_corner_detect_9

Parameters:
imThe input image
cornersThe resulting container of corner locations
barrierCorner detection threshold
void CVD::fast_corner_score_8 ( const SubImage< byte > &  i,
const std::vector< ImageRef > &  corners,
int  b,
std::vector< int > &  scores 
)

Compute the 8 point score (as the maximum threshold at which the point will still be detected) for a std::vector of features.

Parameters:
imThe input image
cornersThe resulting container of corner locations
barrierInitial corner detection threshold. Using the same threshold as for corner detection will produce the quickest results, but any lower value (e.g. 0) will produce correct results.
void CVD::fast_corner_detect_9 ( const BasicImage< byte > &  im,
std::vector< ImageRef > &  corners,
int  barrier 
)

Perform tree based 9 point FAST feature detection as described in: Machine Learning for High Speed Corner Detection, E.

Rosten and T. Drummond. Results show that this is both the fastest and the best of the detectors. If you use this in published work, please cite:

@inproceedings{rosten2006machine,
	title       =    "Machine Learning for High Speed Corner Detection",
	author      =    "Edward Rosten and Tom Drummond",
	year        =    "2006",     
	month       =    "May",     
	booktitle   =    "9th European Conference on Computer Vision",
}
Parameters:
imThe input image
cornersThe resulting container of corner locations
barrierCorner detection threshold
void CVD::fast_corner_score_9 ( const SubImage< byte > &  i,
const std::vector< ImageRef > &  corners,
int  b,
std::vector< int > &  scores 
)

Compute the 9 point score (as the maximum threshold at which the point will still be detected) for a std::vector of features.

Parameters:
imThe input image
cornersThe resulting container of corner locations
barrierInitial corner detection threshold. Using the same threshold as for corner detection will produce the quickest results, but any lower value (e.g. 0) will produce correct results.
void CVD::fast_corner_detect_9_nonmax ( const BasicImage< byte > &  im,
std::vector< ImageRef > &  max_corners,
int  barrier 
)

Perform FAST-9 corner detection (see fast_corner_detect_9), with nonmaximal suppression (see fast_corner_score_9 and nonmax_suppression)

Parameters:
imThe input image
cornersThe resulting container of locally maximal corner locations
barrierCorner detection threshold
void CVD::fast_corner_detect_10 ( const BasicImage< byte > &  im,
std::vector< ImageRef > &  corners,
int  barrier 
)

Perform tree based 10 point FAST feature detection If you use this, please cite the paper given in fast_corner_detect.

Parameters:
imThe input image
cornersThe resulting container of corner locations
barrierCorner detection threshold
void CVD::fast_corner_score_10 ( const SubImage< byte > &  i,
const std::vector< ImageRef > &  corners,
int  b,
std::vector< int > &  scores 
)

Compute the 10 point score (as the maximum threshold at which the point will still be detected) for a std::vector of features.

Parameters:
imThe input image
cornersThe resulting container of corner locations
barrierInitial corner detection threshold. Using the same threshold as for corner detection will produce the quickest results, but any lower value (e.g. 0) will produce correct results.
void CVD::fast_corner_detect_11 ( const BasicImage< byte > &  im,
std::vector< ImageRef > &  corners,
int  barrier 
)

Perform tree based 11 point FAST feature detection If you use this, please cite the paper given in fast_corner_detect_9.

Parameters:
imThe input image
cornersThe resulting container of corner locations
barrierCorner detection threshold
void CVD::fast_corner_score_11 ( const SubImage< byte > &  i,
const std::vector< ImageRef > &  corners,
int  b,
std::vector< int > &  scores 
)

Compute the 11 point score (as the maximum threshold at which the point will still be detected) for a std::vector of features.

Parameters:
imThe input image
cornersThe resulting container of corner locations
barrierInitial corner detection threshold. Using the same threshold as for corner detection will produce the quickest results, but any lower value (e.g. 0) will produce correct results.
void CVD::fast_corner_detect_12 ( const BasicImage< byte > &  im,
std::vector< ImageRef > &  corners,
int  barrier 
)

Perform tree based 12 point FAST feature detection If you use this, please cite the paper given in fast_corner_detect_9.

Parameters:
imThe input image
cornersThe resulting container of corner locations
barrierCorner detection threshold
void CVD::fast_corner_score_12 ( const SubImage< byte > &  i,
const std::vector< ImageRef > &  corners,
int  b,
std::vector< int > &  scores 
)

Compute the 11 point score (as the maximum threshold at which the point will still be detected) for a std::vector of features.

Parameters:
imThe input image
cornersThe resulting container of corner locations
barrierInitial corner detection threshold. Using the same threshold as for corner detection will produce the quickest results, but any lower value (e.g. 0) will produce correct results.
template<class It >
void CVD::haar1D ( It  from,
It  to 
) [inline]

computes the 1D Haar transform of a signal in place.

This version takes two iterators, and the data between them will be transformed. Will only work correctly on 2^N data points.

Parameters:
fromiterator pointing to the beginning of the data
toiterator pointing to the end (after the last element)

Definition at line 58 of file haar.h.

Referenced by CVD::haar1D(), and CVD::haar2D().

template<class It >
void CVD::inv_haar1D ( It  from,
It  to 
) [inline]

computes the inverse 1D Haar transform of a signal in place.

This version takes two iterators, and the data between them will be transformed. Will only work correctly on 2^N data points.

Parameters:
fromiterator pointing to the beginning of the data
toiterator pointing to the end (after the last element)

Definition at line 71 of file haar.h.

Referenced by CVD::inv_haar1D().

template<class It >
void CVD::haar1D ( It  from,
int  size 
) [inline]

computes the 1D Haar transform of a signal in place.

Will only work correctly on 2^N data points.

Parameters:
fromiterator pointing to the beginning of the data
sizenumber of data points, should be 2^N

Definition at line 83 of file haar.h.

References CVD::haar1D().

template<class It >
void CVD::inv_haar1D ( It  from,
int  size 
) [inline]

computes the inverse 1D Haar transform of a signal in place.

Will only work correctly on 2^N data points.

Parameters:
fromiterator pointing to the beginning of the data
sizenumber of data points, should be 2^N

Definition at line 93 of file haar.h.

References CVD::inv_haar1D().

template<class It >
void CVD::haar2D ( It  from,
const int  width,
const int  height,
int  stride = -1 
) [inline]

computes the 2D Haar transform of a signal in place.

Works only with data with power of two dimensions, 2^N x 2^ M.

Parameters:
fromiterator pointing to the beginning of the data
widthcolumns of data, should be 2^N
heightrows of data, should be 2^M
strideoffset between rows, if negative will be set to width

Definition at line 105 of file haar.h.

References CVD::haar1D().

Referenced by CVD::haar2D().

template<class T >
void CVD::haar2D ( SubImage< T > &  I) [inline]

computes the 2D Haar transform of an image in place.

Works only with images with power of two dimensions, 2^N x 2^ M.

Parameters:
Iimage to be transformed

Definition at line 137 of file haar.h.

References CVD::SubImage< T >::data(), CVD::haar2D(), CVD::SubImage< T >::row_stride(), CVD::SubImage< T >::size(), CVD::ImageRef::x, and CVD::ImageRef::y.

template<class Score , class Inserter , class C , class B >
void CVD::harrislike_corner_detect ( const SubImage< B > &  i,
C &  c,
unsigned int  N,
float  blur,
float  sigmas,
BasicImage< float > &  xx,
BasicImage< float > &  xy,
BasicImage< float > &  yy 
)

Generic Harris corner detection function.

This can use any scoring metric and can store corners in any container. The images used to hold the intermediate results must be passed to this function.

Parameters:
iInput image.
cContainer holding detected corners
NNumber of corners to detect
blurBlur radius to use
sigmasNumber of sigmas to use in blur.
xxHolds the result of blurred, squared X gradient.
xyHolds the result of blurred, X times Y gradient.
yyHolds the result of blurred, squared Y gradient.

Definition at line 81 of file harris_corner.h.

References CVD::SubImage< T >::size(), CVD::ImageRef::x, CVD::ImageRef::y, and CVD::zeroBorders().

template<class S , class D >
void CVD::integral_image ( const SubImage< S > &  in,
SubImage< D > &  out 
)

Compute an integral image.

In an integral image, pixel (x,y) is equal to the sum of all the pixels in the rectangle from (0,0) to (x,y) in the original image. and reallocation is not performed if b is unique and of the correct size.

Parameters:
DThe destination image pixel type
SThe source image pixel type
inThe source image.
outThe source image.

Definition at line 40 of file integral_image.h.

References CVD::SubImage< T >::size(), CVD::ImageRef::x, and CVD::ImageRef::y.

template<class S , class D >
Image<D> CVD::integral_image ( const BasicImage< S > &  from)

Compute an integral image.

In an integral image, pixel (x,y) is equal to the sum of all the pixels in the rectangle from (0,0) to (x,y) in the original image. Type deduction is automatic, and D can not be specified. The following usage will work:

 Image<byte> a;
 Image<int> b;
 ...
 b = integral_image(a);

Note that this is performed using lazy evaluation, so convertion happens on evaluation of assignment, and reallocation is not performed if b is unique and of the correct size.

Parameters:
DThe destination image pixel type
SThe source image pixel type
fromThe source image.
Returns:
The integral image
double CVD::interpolate_extremum ( double  d1,
double  d2,
double  d3 
)

Interploate a 1D local extremem by fitting a quadratic tho the three data points and interpolating.

The middle argument must be the most extreme, and the extremum position is returned relative to 0.

Arguments are checked for extremeness by means of assert.

Parameters:
d1Data point value for $x=-1$
d2Data point value for $x=0$
d3Data point value for $x=1$
Returns:
The $x$ coordinate of the extremum.

Definition at line 43 of file interpolate.h.

Referenced by CVD::interpolate_extremum().

TooN::Vector<2> CVD::interpolate_extremum ( double  I__1__1,
double  I__1_0,
double  I__1_1,
double  I_0__1,
double  I_0_0,
double  I_0_1,
double  I_1__1,
double  I_1_0,
double  I_1_1 
)

Interpolate a 2D local maximum, by fitting a quadratic.

This is done by using using the 9 datapoints to compute the local Hessian using finite differences and finding the location where the gradient is zero.

Given the grid of pixels:

	    a b c
	    d e f
	    g h i
	    

The centre pixel (e) must be the most extreme of all the pixels.

Parameters:
I__1__1Pixel $(-1, -1)$ relative to the centre (a)
I__1_0Pixel $(-1, 0)$ relative to the centre (b)
I__1_1Pixel $(-1, 1)$ relative to the centre (c)
I_0__1Pixel $( 0, -1)$ relative to the centre (d)
I_0_0Pixel $( 0, 0)$ relative to the centre (e)
I_0_1Pixel $( 0, 1)$ relative to the centre (f)
I_1__1Pixel $( 1, -1)$ relative to the centre (g)
I_1_0Pixel $( 1, 0)$ relative to the centre (h)
I_1_1Pixel $( 1, 1)$ relative to the centre (i)
Returns:
Location of the local extrema.

Definition at line 77 of file interpolate.h.

template<class I >
TooN::Vector<2> CVD::interpolate_extremum ( const SubImage< I > &  i,
ImageRef  p 
)

Interpolate a 2D local maximum, by fitting a quadratic.

Parameters:
iImage in which to interpolate extremum
pPoint at which to interpolate extremum
Returns:
Location of local extremum in image coordinates

Definition at line 113 of file interpolate.h.

References CVD::interpolate_extremum(), CVD::SubImage< T >::size(), CVD::vec(), CVD::ImageRef::x, and CVD::ImageRef::y.

std::pair<TooN::Vector<2>, double> CVD::interpolate_extremum_value ( double  I__1__1,
double  I__1_0,
double  I__1_1,
double  I_0__1,
double  I_0_0,
double  I_0_1,
double  I_1__1,
double  I_1_0,
double  I_1_1 
)

Interpolate a 2D local maximum, by fitting a quadratic.

This is done by using using the 9 datapoints to compute the local Hessian using finite differences and finding the location where the gradient is zero. This version returns also the value of the extremum.

Given the grid of pixels:

	    a b c
	    d e f
	    g h i
	    

The centre pixel (e) must be the most extreme of all the pixels.

Parameters:
I__1__1Pixel $(-1, -1)$ relative to the centre (a)
I__1_0Pixel $(-1, 0)$ relative to the centre (b)
I__1_1Pixel $(-1, 1)$ relative to the centre (c)
I_0__1Pixel $( 0, -1)$ relative to the centre (d)
I_0_0Pixel $( 0, 0)$ relative to the centre (e)
I_0_1Pixel $( 0, 1)$ relative to the centre (f)
I_1__1Pixel $( 1, -1)$ relative to the centre (g)
I_1_0Pixel $( 1, 0)$ relative to the centre (h)
I_1_1Pixel $( 1, 1)$ relative to the centre (i)
Returns:
pair containing Location of the local extrema and the value

Definition at line 156 of file interpolate.h.

Referenced by CVD::interpolate_extremum_value().

template<class I >
std::pair<TooN::Vector<2>, double> CVD::interpolate_extremum_value ( const SubImage< I > &  i,
ImageRef  p 
)

Interpolate a 2D local maximum, by fitting a quadratic.

Parameters:
iImage in which to interpolate extremum
pPoint at which to interpolate extremum
Returns:
pair containing Location of local extremum in image coordinates and the value of the extemum

Definition at line 193 of file interpolate.h.

References CVD::interpolate_extremum_value(), CVD::SubImage< T >::size(), CVD::vec(), CVD::ImageRef::x, and CVD::ImageRef::y.

template<class Accumulator , class T >
void CVD::morphology ( const SubImage< T > &  in,
const std::vector< ImageRef > &  selem,
const Accumulator &  a_,
SubImage< T > &  out 
)

Perform a morphological operation on the image.

At the edge of the image, the structuring element is cropped to the image boundary. This function is for homogenous structuring elements, so it is suitable for erosion, dialtion and etc, not hit-and-miss and so on.

For example:

     Image<byte> image, eroded;
     vector<ImageRef> structuring_element = getDisc(10);
     
     ...
     
     morphology(image, structure_element, Erode<byte>(), eroded);

Morphology is performed efficiently using an incremental algorithm. As the structuring element is moved across the images, only pixels on it's edge are added and removed. Other morphological operators can be added by creating a class with the following methods:

 template<class T> struct Operation
 {
     void insert(const T&); //Add a pixel
     void remove(const T&); //Remove a pixel
     void clear(const T&);  //Remove all pixels
     T get();               //Get the current value.
 }

Grayscale erode could be implemented with a multiset to store and remove pixels. Get would simply return the first element in the multiset.

Parameters:
inThe source image.
selemThe structuring element. See e.g. getDisc()
a_The morphological operation to perform. See Morphology
outThe destination image.

Definition at line 76 of file morphology.h.

References CVD::SubImage< T >::size(), CVD::ImageRef::x, and CVD::ImageRef::y.

Image<T> CVD::morphology ( const SubImage< T > &  in,
const std::vector< ImageRef > &  selem,
const Accumulator &  a_ 
)

Perform a morphological operation on the image.

Parameters:
inThe source image.
selemThe structuring element. See e.g. getDisc()
a_The morphological operation to perform. See Morphology
outThe destination image.
void CVD::nonmax_suppression_strict ( const std::vector< ImageRef > &  corners,
const std::vector< int > &  scores,
std::vector< ImageRef > &  nmax_corners 
)

Perform nonmaximal suppression on a set of features, in a 3 by 3 window.

The test is strict: a point must be greater than its neighbours.

Parameters:
cornersThe corner locations
scoresThe corners' scores
max_cornersThe locally maximal corners.
void CVD::nonmax_suppression ( const std::vector< ImageRef > &  corners,
const std::vector< int > &  scores,
std::vector< ImageRef > &  nmax_corners 
)

Perform nonmaximal suppression on a set of features, in a 3 by 3 window.

The test is non-strict: a point must be at least as large as its neighbours.

Parameters:
cornersThe corner locations
scoresThe corners' scores
max_cornersThe locally maximal corners.
void CVD::nonmax_suppression_with_scores ( const std::vector< ImageRef > &  corners,
const std::vector< int > &  socres,
std::vector< std::pair< ImageRef, int > > &  max_corners 
)

Perform nonmaximal suppression on a set of features, in a 3 by 3 window.

Non strict.

Parameters:
cornersThe corner locations
scoresThe corners' scores
max_cornersThe locally maximal corners, and their scores.
template<class C >
Image<TooN::Matrix<2> > CVD::dense_tensor_vote_gradients ( const SubImage< C > &  image,
double  sigma,
double  ratio,
double  cutoff = 0.001,
unsigned int  num_divs = 4096 
)

This function performs tensor voting on the gradients of an image.

The voting is performed densely at each pixel, and the contribution of each pixel is scaled by its gradient magnitude. The kernel for voting is computed as follows. Consider that there is a point at $(0,0)$, with gradient normal $(0,1)$. This will make a contribution to the point $(x,y)$.

The arc-length, $l$, of the arc passing through $(0,0)$, tangent to the gradient at this point and also passing through $(x, y)$ is:

\[ l = 2 r \theta \]

Where

\[ \theta = \tan^{-1}\frac{y}{x} \]

and the radius of the arc, $r$ is:

\[ r = \frac{x^2 + y^2}{2y}. \]

The scale of the contribution is:

\[ s = e^{-\frac{l^2}{\sigma^2} - \kappa\frac{\sigma^2}{r^2}}. \]

Note that this is achieved by scaling $x$ and $y$ by $\sigma$, so $\kappa$ controls the kernel shape independent of the size. The complete tensor contribution is therefore:

\[ e^{-\frac{l^2}{\sigma^2} - \kappa\frac{\sigma^2}{r^2}} \left[ \begin{array}{c} \cos 2\theta\\ \sin 2\theta \end{array} \right] [ \cos 2\theta\ \ \sin 2\theta] \]

Parameters:
imageThe image on which to perform tensor voting
sigma$ \sigma $
ratio$ \kappa $
cutoffWhen $s$ points drop below the cutoff, it is set to zero.
num_divsThe voting kernels are quantized by angle in to this many dicisions in the half-circle.

Definition at line 80 of file tensor_voting.h.

References CVD::BasicImage< T >::begin(), CVD::SubImage< T >::row_stride(), CVD::SubImage< T >::size(), CVD::ImageRef::x, and CVD::ImageRef::y.

template<class C >
void CVD::twoThirdsSample ( const SubImage< C > &  in,
SubImage< C > &  out 
)

Subsamples an image to 2/3 of its size by averaging 3x3 blocks into 2x2 blocks.

Parameters:
ininput image
outoutput image (must be out.size() == in.size()/3*2 )
Exceptions:
IncompatibleImageSizesif out does not have the correct dimensions.

Definition at line 47 of file vision.h.

References CVD::SubImage< T >::size(), CVD::ImageRef::x, and CVD::ImageRef::y.

template<class C >
Image<C> CVD::twoThirdsSample ( const SubImage< C > &  from)

Subsamples an image by averaging 3x3 blocks in to 2x2 ones.

Note that this is performed using lazy evaluation, so subsampling happens on assignment, and memory allocation is not performed if unnecessary.

Parameters:
fromThe image to convert from
Returns:
The converted image
template<class T >
void CVD::halfSample ( const BasicImage< T > &  in,
BasicImage< T > &  out 
)

subsamples an image to half its size by averaging 2x2 pixel blocks

Parameters:
ininput image
outoutput image, must have the right dimensions versus input image
Exceptions:
IncompatibleImageSizesif out does not have half the dimensions of in

Definition at line 118 of file vision.h.

References CVD::SubImage< T >::data(), CVD::SubImage< T >::size(), CVD::SubImage< T >::totalsize(), and CVD::ImageRef::x.

Referenced by CVD::halfSample().

template<class T >
Image<T> CVD::halfSample ( const BasicImage< T > &  in) [inline]

subsamples an image to half its size by averaging 2x2 pixel blocks

Parameters:
ininput image
Returns:
The output image
Exceptions:
IncompatibleImageSizesif out does not have half the dimensions of in

Definition at line 149 of file vision.h.

References CVD::halfSample(), and CVD::SubImage< T >::size().

template<class T >
Image<T> CVD::halfSample ( Image< T >  in,
unsigned int  octaves 
) [inline]

subsamples an image repeatedly by half its size by averaging 2x2 pixel blocks.

This version will not create a copy for 0 octaves because it receives already an Image and will reuse the data.

Parameters:
ininput image
octavesnumber of halfsamplings
Returns:
The output image
Exceptions:
IncompatibleImageSizesif out does not have half the dimensions of in

Definition at line 165 of file vision.h.

References CVD::halfSample().

template<class T >
void CVD::threshold ( BasicImage< T > &  im,
const T &  minimum,
const T &  hi 
)

thresholds an image by setting all pixel values below a minimum to 0 and all values above to a given maximum

Parameters:
iminput image changed in place
minimumthreshold value
himaximum value for values above the threshold

Definition at line 178 of file vision.h.

References CVD::BasicImage< T >::begin(), and CVD::BasicImage< T >::end().

template<class T >
void CVD::stats ( const BasicImage< T > &  im,
T &  mean,
T &  stddev 
)

computes mean and stddev of intensities in an image.

These are computed for each component of the pixel type, therefore the output are two pixels with mean and stddev for each component.

Parameters:
iminput image
meanpixel element containing the mean of intensities in the image for each component
stddevpixel element containing the standard deviation for each component

Definition at line 198 of file vision.h.

References CVD::SubImage< T >::data(), and CVD::SubImage< T >::totalsize().

template<class S , class T >
void CVD::gradient ( const BasicImage< S > &  im,
BasicImage< T > &  out 
)

computes the gradient image from an image.

The gradient image contains two components per pixel holding the x and y components of the gradient.

Parameters:
iminput image
outoutput image, must have the same dimensions as input image
Exceptions:
IncompatibleImageSizesif out does not have same dimensions as im

Definition at line 260 of file vision.h.

References CVD::SubImage< T >::size().