
Robust feature matching in 2.3µs

Simon Taylor Edward Rosten Tom Drummond
Department of Engineering, University of Cambridge

Trumpington Street, Cambridge, CB2 1PZ, UK
{sjt59, er258, twd20}@cam.ac.uk

Abstract

In this paper we present a robust feature matching
scheme in which features can be matched in 2.3µs. For
a typical task involving 150 features per image, this re-
sults in a processing time of 500µs for feature extraction
and matching. In order to achieve very fast matching we
use simple features based on histograms of pixel intensities
and an indexing scheme based on their joint distribution.
The features are stored with a novel bit mask representation
which requires only 44 bytes of memory per feature and al-
lows computation of a dissimilarity score in 20ns. A train-
ing phase gives the patch-based features invariance to small
viewpoint variations. Larger viewpoint variations are han-
dled by training entirely independent sets of features from
different viewpoints.

A complete system is presented where a database of
around 13,000 features is used to robustly localise a single
planar target in just over a millisecond, including all steps
from feature detection to model fitting. The resulting system
shows comparable robustness to SIFT [8] and Ferns [14]
while using a tiny fraction of the processing time, and in the
latter case a fraction of the memory as well.

1. Introduction
Matching the same real world points in different images

is a fundamental problem in computer vision, and a vi-
tal component of applications such as automated panorama
stitching (e.g. [2]), image retrieval (e.g. [16]) and object lo-
calisation (e.g. [8]).

Matching schemes must define a measure of similarity
between parts of images, which in the ideal case is high
if the image locations correspond to the same real-world
point and low otherwise. The most basic description of a
region of an image is a patch of pixel values. Patch matches
can be found by searching for a pair of patches with a high
cross-correlation score or a low sum-of-squared-differences
(SSD) score. However patch matching with SSD provides
no invariance to common image transformations such as

Figure 1. Two frames from a sequence including partial occlusion
and significant viewpoint variation. The average total processing
time per 640x480 frame for the sequence is 1.37ms using one core
of a 2.4GHz processor. Extracting runtime patch descriptors and
finding matches in the database accounts for 520µs of this time.

viewpoint change, and performing exhaustive patch match-
ing between all possible pairs of patches is infeasible.

Moravec proposed an interest point detector [13] to in-
troduce some invariance to translation and hence reduce the
number of patch matches to be considered. Interest point
detection is now well-established as the first stage of state-
of-the art matching schemes. There are many other trans-
formations between the images, such as rotation and scale,
which an ideal matching scheme should cope with. There
are generally two approaches possible for each category of
transformation; either factor out the effect of the transfor-
mation, or make the representation of the area of interest
invariant to it. Detecting interest points falls into the first
category in that it factors out coarse changes in position.

Schmid and Mohr [16] presented the first interest point
approach to offer invariance to many image transforma-
tions. A number of rotationally invariant features were com-
puted around interest points in images. During matching
the same features were computed at multiple scales to give
the method invariance to both scale and rotation changes
around the interest point.

Instead of computing features invariant to rotation, a
canonical orientation can be computed from the region
around an interest point and used to factor out the effect
of rotation. A variety of methods for finding orientation
have been proposed including the orientation of the largest



eigenvector in Harris [4] corner detection, the maxima in
an edge orientation histogram [8] or gradient direction at a
very coarse scale [2].

The interest point detection stage can also factor out
more than just translation changes. Scale changes can be
accounted for by a searching for interest regions over scale
space [8, 10]. The space of affine orientation has too many
dimensions to be searched directly, so schemes have been
proposed to perform local searches for affine orientation
starting from scale-space interest regions [11]. Alterna-
tively, interest regions can be found and affine orientation
deduced from the shape of the region [9].

Schemes such as those above can factor out large
changes due to many common imaging transformations, but
differences between matching patches will remain due to
errors in the assignment of the canonical parameters and
unmodelled distortions. To give robustness to these errors
the patches extracted from the canonical frames undergo
a further stage of processing. Lowe’s SIFT (scale invari-
ant feature transform) method [8] typifies this approach and
uses soft binning of edge orientation histograms which vary
weakly with the position of edges.

Other systems in this category include GLOH (Gradi-
ent Location and Orientation Histogram) [12] and MOPS
(Multi-scale Oriented Patches) [2] which extracts patches
from a different scale image to the interest region detec-
tion. Winder and Brown applied a learning approach to find
optimal parameters for these types of descriptor [18]. The
CS-LBP descriptor [5] uses a SIFT-style histogram of local
information from the canonical patches but the local infor-
mation used is a binary pattern rather than the local gradient
used in SIFT.

All of the above approaches aim to compute a single de-
scriptor for a real-world feature which is as invariant as pos-
sible to all likely image transformations. Correspondences
between images are determined by extracting descriptors
from both images and finding those that are close neigh-
bours in feature space.

An interesting alternative approach recasts the match-
ing problem as one of classification. This approach uses
a training stage to train classifiers for the database features,
which allows matching to be performed with less expensive
computation at run-time than required by descriptor-based
methods. Lepetit et al. demonstrated real-time matching us-
ing randomised trees to classify patches extracted from lo-
cation, scale and orientation-normalised interest regions [7].
Only around 300 bits are computed from the query images
for each interest region to be classified. Later work from
Oyuzal et al. introduced the Ferns method [14] which im-
proved classification performance to the point where the
orientation normalisation of interest regions was no longer
necessary. These methods only perform simple computa-
tions on the runtime image, however the classifiers need

to represent complicated joint distributions for each feature
and so a large amount of memory is required. This limits
the approach to a few hundred features on standard desktop
PCs.

Runtime performance is of key importance for many
applications. The template tracking system of Jurie and
Dhome [6] performs well but in common with any tracking
scheme relies on small frame-to-frame motion and requires
another method for initialisation. Recent work on adapting
the SIFT and Fern approaches to mobile phones [17] made
trade-offs to both approaches to increase speed whilst main-
taining usable matching accuracy. Our method is around
4 times faster than these optimised implementations and
acheives more robust localisation.

Existing state-of-the-art matching approaches based on
descriptor computation or patch classification attempt to
match any possible view of a target to a small set of key
features. Descriptor-based approaches such as SIFT factor
out image transformations with computationally expensive
image processing. Classification methods such as Ferns of-
fer reduced runtime computation but have a high memory
cost to represent the complex joint distributions involved.

Our method avoids the complexity inherent to matching
areas of images subject to large transformations. Instead we
employ a training phase to learn independent sets of features
for different views of the target, and insert them all into the
database for the target. The individual features are only in-
variant to small changes of viewpoint. This simplifies the
matching problem so neither the computationally expensive
normalisation over transformations of SIFT-style methods
or the complex classifier of the Fern-like approach are re-
quired.

As we only require features to be invariant to small view-
point changes we need far less invariance from our interest
point detector than other matching schemes. The FAST-9
(Features from Accelerated Segment Test) detector [15] is a
perfect fit for our application as it shows good repeatability
over small viewpoint variations and is extremely efficient as
it requires no convolutions or searches over scale space.

A potential problem with using features with less invari-
ance than those of other approaches is that more database
features will be required to allow robust matching over
equivalent ranges of views at runtime. Therefore to make
our new approach feasible we require features that have a
low memory footprint and which permit rapid computation
of a matching score. Our novel bit-mask patch feature ful-
fils these criteria.

As runtime performance is our primary concern we
would like to avoid too much processing on the pixels
around the detected interest points. Using pixel patches
would be one of the simplest possible matching schemes
but SSD-based patch matching would not even provide the
small amount of viewpoint invariance we desire. One of the



reasons SSD is very sensitive to registration errors is that
it assigns equal weight to errors from all the pixels in the
patch. Berg and Malik [1] state that registration errors, at
least for scale and rotation, will have more effect on samples
further from the centre of the patch. The authors reduce the
weight of errors in those samples by employing a variable
blur which is stronger further from the centre of the patch.
We use the idea that not all pixels in a patch are equally im-
portant for matching, but further note that the weights which
should be assigned to pixels also depend on the individual
feature: samples in the centre of large regions of constant
intensity will be robust to small variations in viewpoint.

We employ a training phase to learn a model for the
range of patches expected for each feature. This model al-
lows runtime matching to use simple pixel patches whilst
providing sufficient viewpoint invariance for our frame-
work. For fast localisation the memory and computational
cost of matching is reduced by heavily quantising the model
to a small binary representation that can be very efficiently
matched at runtime.

1.1. Our Contributions

• We show fast and robust localisation of a target using
simple features which only match under small view-
point variations.

• A large set of features from different views of a target
are combined to allow matching under large transfor-
mations.

• We introduce a simple quantised-patch feature with a
bit mask representation which enables very fast match-
ing at runtime. The features represent the patch varia-
tions observed in a training phase.

2. Learning Features for a Target
We use a large set of training images covering the entire

range of viewpoints where localisation is required. The set
of images could be captured for real, but we instead artifi-
cially generate the set by warping a single reference image.
Different scales, rotations and affine warps are included in
the training set. Additionally random pixel noise and a blur
of a small random size are added to each generated view
so the trained features have more robustness to poor quality
images.

The training views for a target are grouped into sev-
eral hundred viewpoint bins so that each bin covers a small
range of viewpoints. The interest point detector is run on
each image in the bin in sequence and patches are extracted
from around the detected corners. The interest point loca-
tions can be converted to a position in the reference frame
as the warp between the reference and training image is
known. If the database for the viewpoint already contains a

Figure 2. Left: The sparse 8×8 sampling grid used by the features.
Right: The 13 samples selected to form the index.

feature nearby the detected point in the new training image,
then the patch model for that feature is updated with the new
patch. Otherwise a new feature is created and added to the
database. When all of the images in a viewpoint bin have
been processed we select the n features (typically 50-100)
which were most repeatably detected by the FAST detec-
tor and quantise their patch models to the binary feature
descriptions used at runtime as described in the following
section.

2.1. Database Feature Representation

The features in our system are based on an 8 × 8 pixel
patch extracted from a sparsely sampled grid around an in-
terest point, as shown in Figure 2. The extracted samples
are firstly normalised such that they have zero mean and
unity standard deviation to give robustness to affine lighting
variations. During training we build a model of the feature
which consists of 64 independent empirical distributions of
normalised intensity, one per pixel of the sampling grid.

This model can be used to calculate the likelihood that
a runtime patch is from a trained feature, assuming each
pixel is independent. However computing this likelihood
estimate would require too much memory and computation
time to be used in real-time on a large database of fea-
tures. Since features only need to match over small view-
point ranges we are able to heavily quantise the model for a
feature and still obtain excellent matching performance.

We quantise the per-pixel distribution in two ways.
Firstly the empirical intensity distributions are represented
as histograms with 5 intensity bins. Secondly when train-
ing is complete we replace the probability in each bin with
a single bit which is 1 if pixels rarely fell into the bin (less
than 5% of the time). The quantisation is illustrated in Fig-
ure 3.

A feature in the database D can be written as:

D0,0 D0,1 D0,2 D0,3 D0,4

D1,0 D1,1 D1,2 D1,3 D1,4

...
...

...
...

...
D63,0 D63,1 D63,2 D63,3 D63,4,

(1)

where a row Di,... corresponds to the quantised histogram



Figure 3. The independent per-pixel empirical distributions are
quantised into 5 intensity bins, and then further quantised into a
bit mask identifying bins rarely observed during the training phase.
This process is shown for: (left) a constant intensity region, (cen-
tre) a step change in intensity, (right) an intensity ramp. The data
was created by taking the image (top) and adding random blur,
noise and translation errors.

for a single pixel of the patch, and

Di,j =

{
1 if P(Bj < I(xi, yi) < Bj+1) < 0.05
0 otherwise.

(2)

where Bj is the minimum intensity value of histogram bin
j and I(xi, yi) is the normalised value of pixel i.

The resulting descriptor requires 5 bits for each of the 64
samples giving a total of 40 bytes of memory per feature. 4
additional bytes are used to store the position of the feature
in the reference image.

3. Runtime Matching

After the quantisation to bits the patch descriptions no
longer represent probability distributions and so we cannot
compute the likelihood of a feature giving rise to a patch.
However the bit mask does identify the intensity bins that
samples rarely fell into at training time and so good matches
should only have a small number of samples which fall into
these bins in the runtime patch. Hence we use a count of
the number of samples which fall into bins marked with
a 1 in the database patch description as our dissimilarity
score. The best matching feature in the database is the one
that gives the lowest dissimilarity score when compared to
the query patch, as that represents the match with fewest
“errors” (runtime pixels in unexpected bins). The major
advantage of the simple error count measure is that it can
be computed with bitwise operations, which allows a large
number of potential matches to be scored very quickly.

The bitwise representation of a runtime patch R is
slightly different to the database feature of equation 1. It
is also represented by a 320-bit value but has exactly 1 bit
set for each pixel, corresponding to the intensity bin which

the sample from the runtime patch is in:

Ri,j =

{
1 if Bj < RP(xi, yi) < Bj+1

0 otherwise.
(3)

where RP(xi, yi) is the value of pixel i in the normalised
runtime patch extracted from around an interest point de-
tected in a runtime image.

With the preceeding definitions of the database and run-
time patch representations the dissimilarity score can be
simply computed by counting the number of bits where both
Di,j and Ri,j are equal to 1:

e =
∑
i,j

Di,j ⊗ Ri,j , (4)

where ⊗ is a logical AND. Since each row of R always has
one single bit set, this can be rewritten as:

e =
∑

i

((Di,0 ⊗ Ri,0) ⊕ ... ⊕ (Di,4 ⊗ Ri,4)) (5)

where ⊕ denotes logical OR. By packing each column of
D and R into a 64 bit integer (Dj and Rj) the necessary
logical operations can be performed for all rows in parallel.
The dissimilarity score can thus be obtained from a bitcount
of a 64-bit integer:

e = bitcount ((D0 ⊗ R0) ⊕ ... ⊕ (D4 ⊗ R4)) (6)

Computing the error measure therefore requires 5 ANDs,
4 ORs and a bit count of a 64 bit integer. Some architectures
(including recent x86 CPUs with SSE4.2) support a single-
instruction bitcount. For other architectures, including our
test machine, the bitcount can be performed in 16 instruc-
tions using an 11 bit lookup table to count chunks of 11 bits
at a time. The total time to compute an error measure using
the lookup table bitcount is about 20ns.

The first stage of finding matches from a runtime image
is to run the FAST-9 interest point detector. As the training
phase has selected the most repeatable FAST features from
each viewpoint it is not necessary to obtain too many inter-
est points from the input image. We typically find no more
than 200 are needed for robust localisation. The 8×8 patch
of Figure 2 is extracted, and the mean and standard devi-
ation of the samples are calculated to enable quantisation
into the 320-bits Ri,j of equation 3. The dissimilarity score
between the patch and each database feature is computed
using the fast method of equation 6.

The database feature with the lowest dissimilarity score
for a runtime patch is treated as a match if the error count
is below a threshold (typically 5). The matches from all the
runtime patches can be sorted by error count to order them
in terms of quality.



3.1. Indexing

The dissimilarity score between a runtime patch and a
database feature can be computed very quickly using equa-
tion 6, however as we use larger numbers of features than
alternative approaches it is desirable to combine the basic
method above with an indexing scheme to reduce the num-
ber of scores which must be computed and to prevent the
search time growing linearly with the database size.

The indexing approach we use is inspired by the Ferns
work[14] which uses joint distributions of simple binary
tests from training images. Our current implementation
uses the 13 samples shown on the right of Figure 2 to com-
pute an index number. The samples have been selected rea-
sonably close to the patch centre as they are expected to
be more consistent under rotation and scale, but somewhat
spaced apart so that they are reasonably uncorrelated.

Each of the samples selected for the index is quantised
to a single bit: 1 if the pixel value is above the mean of the
patch and 0 otherwise. The 13 samples are then concate-
nated to form a 13-bit integer. Thus the index in our cur-
rent implementation can take values between 0 and 8192.
The index value is used to index a lookup table of sets of
database features. At runtime the dissimilarity score is only
computed against the set of features in the entry of the table
with the matching index.

The training phase is used to determine the set of index
values which will account for most possible runtime views
of a particular feature. Every patch from the training set that
contributes to the model for a particular feature also con-
tributes a vote for the index value computed from the patch.
After training is complete we select the most-common in-
dices until together the selected set of indices account for at
least 80% of the training patches used in building the fea-
ture. This set of indices is saved with the feature, and the
feature is inserted into all of the corresponding sets of fea-
tures in the lookup table at runtime.

3.2. Improving Robustness to Blur

FAST is not an inherently multi-scale detector and fails
to detect good features when the image is significantly
blurred. Although our training set includes some random
blur so the features are trained to be robust to this we still
rely on the repeatability of the detector to find the features
in the first place. The few frames where blur is a problem in
typical image sequences do not justify switching to a multi-
scale detector, so we take a different approach.

To perform detection in blurred images, we create an im-
age pyramid with a factor of 2 in scale between images, and
run FAST on each layer of the pyramid. In order to avoid
incurring the cost of building the pyramid at each frame, we
use a data driven approach to decide when to stop building
the pyramid.

Initially features are extracted and matched on the full-
sized image. The features are then fed to the next stage of
processing, such as estimating the camera pose. If the later
stages of processing determine that there are too few good
matches, then another set of features are extracted from the
next layer of the image pyramid. These are aggregated with
the first set of features, but the new features are assumed to
have a better score. If again insufficient matches are found,
the next layer of the pyramid is used and so on until either
enough good matches or a minimum image size has been
reached.

We choose a factor of 2 between images in the pyra-
mid, as this allows for a particularly efficient implementa-
tion such that around 200µs are required to half-sample a
640 × 480 frame. We build a pyramid with a maximum of
3 layers. The resulting system obtains considerable robust-
ness to blur, since the blur in the smallest layer is reduced by
a factor of 4. Furthermore, it allows for matches to be made
over a greater range of scales as the automatic fallback to
sub-sampled images allows matching on frames when the
camera is closer to the target than any training images.

4. Results and Discussion

In order to validate our method, we apply it to the task of
matching points in frames of a video sequence to a known
planar object, and finding the corresponding homography.
After finding matches the homography is estimated using
PROSAC [3] and refined using the inliers. The inlier set is
reestimated and refined for several iterations. The result-
ing homography allows us to determine which points were
matched correctly.

The database for the frames shown in Figure 1 was gen-
erated from a training set of 21672 images, generated by
warping a single source image of the target. 7 different
scale ranges and 36 different camera axis rotation ranges
were used, giving a total of 252 viewpoint bins. Each bin
covers a reduction in scale by a factor of 0.8, 10 degrees of
camera axis rotation, and out-of-plane viewpoints in all di-
rections of up to 30 degrees. We extract around 50 features
from each viewpoint bin (more from larger scale images),
giving a total of 13372 features in the database.

4.1. Validating the Bit Count Dissimilarity Score

Two short video sequences of the planar target of Figure
1 were captured using a cheap VGA webcam. The first se-
quence was captured from viewpoints which were known to
have been covered by our training phase whereas the second
sequence was viewed with a larger out-of-plane rotation,
known to be outside the range of training. The database fea-
tures were trained from the source image, whereas the test
sequences were poor-quality webcam images of a printed
version of the file. Thus both sequences test the method’s



FAST interest point detection 0.55ms
Building query bit masks 0.12ms
Matching into database 0.35ms
Robust pose estimation 0.1ms
Total frame time 1.12ms

Table 1. Timings for the stages of our approach on a dataset with
images taken from within the range of trained viewpoints.

Figure 4. The bit error count provides a reasonable way to deter-
mine good matches. Left: matches from viewpoints contained in
training set. Right: matches on viewpoints from outside training
set.

robustness to different imaging devices.
Matching on the first test sequence was very good, cor-

rectly localising the target in all 754 frames of the test se-
quence. There was little blur in the sequence so the full
frame provided enough matches in all but 7 frames of the
sequence, when the half-sampled image fallback was used
to obtain enough matches for a confident pose estimate. The
average total frame time on the sequence was 1.12ms on a
2.4GHz processor. The time attributed to each stage of the
process is shown in Table 1.

Somewhat surprisingly our method also performed rea-
sonably well on the second sequence, even though it was
known the frames were taken from views that were not cov-
ered by our training set. On this sequence the target was lo-
calised in 635 frames of the 675 in the sequence (94%). As
expected the pose estimate using only the full-frame image
was generally less confident so the fallbacks to sub-sampled
images were used more often: 377 frames used the half-
image and 63 also used the quarter-scale image. Because
of this additional workload the per-frame average time in-
creased to 1.52ms.

The matching performance on these test sequences sug-

Figure 5. Increasing the range of viewpoint bins in the training set
allows more viewpoint invariance to be added in a straightforward
manner.

gests that the bit count dissimilarity score provides a reason-
able way of scoring matches. To confirm this we computed
the average number of inlier and outlier matches over all of
the frames in the two sequences, and plotted these against
the dissimilarity score obtained for the match in Figure 4.
For the sequence on the left where the viewpoints are in-
cluded in the training set many good matches are found in
each frame, with on average 9.7 zero-error inliers obtained.
The inlier percentage for matches with low dissimilarity
scores is also good at over 82% in the zero error case. The
result that both the number of inliers and the inlier fraction
drop off with increasing dissimilarity score demonstrates
that the simple bit error count is a reasonable measure of
the quality of a match. The figure provides strong support
for a PROSAC-like robust estimation procedure once the
matches have been sorted by dissimilarity score as the low
error matches are very likely to be correct.

Even when the viewpoint of the query image is outside
the range for which features have been trained, as in the data
on the right of Figure 4, the dissimilarity score still provides
a reasonable way to sort the matches, as the inlier fraction
can be seen to drop off with increasing dissimilarity. The
inlier rate of the first matches when sorted by dissimilarity
score is still sufficient in most frames to obtain a pose with
a robust estimation stage such as PROSAC.

4.2. Controllable Viewpoint Invariance

As our framework uses independent features for different
viewpoint bins it is possible to trade-off between robustness
to viewpoint variations and computation required for local-
isation by simply adding or removing more bins.

For applications where viewpoints are restricted (for ex-
ample if the camera has a roughly constant orientation) the
number of database features can be drastically reduced lead-
ing to even higher performance. Alternatively if more com-
putational power is available it is possible to increase the



Figure 6. Targets lacking in texture can be localised successfully
over a large viewpoint range and in the presence of background
clutter and partial occlusion.

viewpoint invariance of the method by adding features from
more viewpoint bins. Figure 5 shows the same database as
before, with some additional viewpoint bins trained with
more extreme out-of-plane rotations. However the number
of bins required to cover the full space of affine variations is
large. We find in practice a single top-down-centred bin at
each scale and rotation which includes small affine changes
results in a runtime system which is able to localise the
target successfully in a range of viewpoints comparable to
other methods without the specifically trained extreme out-
of-plane features in the database shown in Figure 5.

4.3. Targets Lacking Detailed Texture

As we only require a small number of interest points to
be found from each viewpoint our method also works well
on scenes lacking detailed texture, as shown in Figure 6.
The database for this target contained 10800 features. Our
method found a pose for the object in 512 of the 517 frames
in the sequence (99%). The average frame time was 1.85ms,
which is increased from the other sequences as the lack of
texture means many features fall in the same index bins re-
sulting in more comparisons at runtime.

4.4. Comparisons with Other Methods

We compared the performance of our method against
the widely used SIFT technique on the sequences shown
in Figures 1 and 6. SIFT keypoints were extracted from
every frame of the two sequences using David Lowe’s bi-
nary. Keypoints were also extracted from the same ref-
erence image used to generate the training sets for our
method. Around 3500 SIFT keypoints are found in the
poster image, and 500 for the logo.

We exhaustively search through all of the reference SIFT
descriptors to find the nearest neighbour to every descriptor
extracted from each frame of the test sequence. We do not
use any threshold to reject mismatches but instead sort the
matches and apply PROSAC which automatically favours
the best-scoring matches. We use two different scores to
sort the matches; one is the distance to the nearest reference
keypoint in SIFT space, and the second is the ratio of the
distances to the two nearest neighbours, as commonly used

Poster Logo
Our Method 625 512
Our Method, 5000 iterations 632 517
SIFT, Distance 590 517
SIFT, Ratio 629 517
SIFT, Ratio, 5000 iterations 630 517

Table 2. Comparison of the number of frames where the target was
localised in two sequences. The Poster dataset is as in Figure 1 and
consists of 637 frames and the Logo dataset is shown in 6 and has
517 frames.

in practice. We firstly allow 150 prosac iterations to match
the parameters used by our runtime method (which uses a
maximum of 50 PROSAC iterations on each image from the
pyramid). Secondly we run both SIFT and our method with
5000 PROSAC iterations to see if this is able to correctly
localise the target in more frames.

The number of frames matched successfully for each se-
quence is shown in Table 2. The results show that we man-
age to successfully localise the targets in a similar number
of frames to SIFT. They also validate the ratio of distance
measure as being the best indication of the quality of a SIFT
match. The parameters in our method are tuned towards
speed rather than accuracy but we still demonstrate excel-
lent performance on these representative real-world data
sets. Interestingly when we use more iterations of PROSAC
on our approach we manage to localise more of the frames,
and in the Poster sequence we localise more frames than the
exhaustive SIFT implementation which is a promising re-
sult. The improvement in performance with more PROSAC
iterations suggests the error count dissimilarity score alone
may not be good enough to sort matches in challenging im-
ages. We could apply additional higher level checks (for
example, viewpoint consistency) to identify the matches
which are likely to be the best so they can be promoted to
the start of the list for the PROSAC procedure.

The SIFT binary requires around 1 second per frame to
extract the keypoints. N-to-N matching would not be used
in practice with large databases, but it is clear the amount
of computation required both for keypoint extraction and
matching is far lower with our approach and we expect even
with optimised SIFT code our method would be hundreds
of times faster in practice. Even so it should be noted that
we require a training phase of around 1 hour per target to
achieve the high performance at runtime so our method is
not suitable for all applications.

The Ferns approach is similarly targeted at real-time lo-
calisation applications. The authors report a total per-frame
time of around 20ms on similar hardware to our testing PC.
Our approach is around ten times faster, and as we do not
represent joint distributions we require around 100 times
less memory than used by a Fern implementation with typ-



ical parameters.
Wagner et al. report an average total frame time of

around 5ms on 320 × 240 sequences for their speed-
optimised SIFT and Fern implementations[17]. The authors
use a test sequence with the same target as Figure 1 and re-
port both methods localise the target in around 96% of the
frames. Our method applied to the same sequence localises
99.6% of the frames with an average frame time of 1.04ms,
so is over 4 times faster than both approaches in [17] and
provides more robust localisation on this sequence.

5. Conclusions and Future Work
We have proposed a novel solution to the feature match-

ing problem using independent features from many differ-
ent viewpoint bins which are only required to be invariant
to small viewpoint changes. This means simple features can
be used with very low memory and computational require-
ments but can still provide matching performance compa-
rable to other state-of-art schemes requiring many orders of
magnitude more computation at runtime.

Our novel binary feature representation for a pixel patch
is trained offline to give the local invariance required within
the viewpoint bin. The binary feature requires just 44 bytes
of memory, and can compute a dissimilarity score against
a query patch in just 20ns. This allows our entire target
localisation (including feature detection, query patch ex-
traction, matching, and robust pose estimation) to run in
around 1.5ms per frame on average, ten times faster than
the Ferns approach and hundreds of times faster than ap-
proaches based on computationally expensive image pro-
cessing such as standard SIFT matching.

The parameter space of our features has not been ex-
plored so we would like to apply a learning approach to
discover the optimal number of quantisation bins and the
best number of samples and their layout for the binary fea-
tures.

The FAST detector offers good repeatability with
camera-axis rotation and so we could try and normalise for
rotation at training time. As we currently use 36 separate
viewpoint bins to cover the range of camera rotation this
has the potential to hugely reduce the number of features
we require for a single target.

6. Acknowledgements
This research is supported by the Boeing Company.

References
[1] A. C. Berg and J. Malik. Geometric blur for template match-

ing. In Computer Vision and Pattern Recognition, volume 1,
pages 607–614, 2001. 3

[2] M. Brown, R. Szeliski, and S. Winder. Multi-image match-
ing using multi-scale oriented patches. Computer Vision and

Pattern Recognition, 2005. CVPR 2005. IEEE Computer So-
ciety Conference on, 1:510–517 vol. 1, June 2005. 1, 2

[3] O. Chum and J. Matas. Matching with PROSAC - pro-
gressive sample consensus. In C. Schmid, S. Soatto, and
C. Tomasi, editors, Proc. of Conference on Computer Vision
and Pattern Recognition (CVPR), volume 1, pages 220–226,
Los Alamitos, USA, June 2005. IEEE Computer Society. 5

[4] C. Harris and M. Stephens. A combined corner and edge
detector. In Alvey Vision Conference, pages 147–151, 1988.
2

[5] M. Heikkilä, M. Pietikäinen, and C. Schmid. Description of
interest regions with local binary patterns. Pattern Recogn.,
42(3):425–436, 2009. 2

[6] F. Jurie and M. Dhome. Hyperplane approximation for tem-
plate matching. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 24(7):996–1000, Jul 2002. 2

[7] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-
time keypoint recognition. In 18th IEEE Conference on Com-
puter Vision and Pattern Recognition, San Deigo, California,
USA, June 2005. Springer. 2

[8] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 2:91–
110, 2004. 1, 2

[9] J. Matas, O. Chum, M. Urbana, and T. Pajdlaa. Robust wide-
baseline stereo from maximally stable extremal regions. Im-
age and Vision Computing, 22(10):761–767, Sept. 2004. 2

[10] K. Mikolajczyk and C. Schmid. Indexing based on scale in-
variant interest points. In 8th IEEE International Conference
on Computer Vision, volume 1, pages 525–531, Vancouver,
Canada, 2001. Springer. 2

[11] K. Mikolajczyk and C. Schmid. An affine invariant inter-
est point detector. In Proceedings of the 7th European Con-
ference on Computer Vision, Copenhagen, Denmark, pages
128–142. Springer, 2002. Copenhagen. 2

[12] K. Mikolajczyk and C. Schmid. A performance evaluation
of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell.,
27(10):1615–1630, 2005. 2

[13] H. Moravec. Rover visual obstacle avoidance. In proceed-
ings of the seventh International Joint Conference on Artifi-
cial Intelligence, pages 785–790, August 1981. 1

[14] M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition
in ten lines of code. Computer Vision and Pattern Recog-
nition, 2007. CVPR ’07. IEEE Conference on, 1:1–8, June
2007. 1, 2, 5

[15] E. Rosten and T. Drummond. Machine learning for high
speed corner detection. In 9th Euproean Conference on Com-
puter Vision, volume 1, pages 430–443. Springer, Apr. 2006.
2

[16] C. Schmid and R. Mohr. Local greyvalue invariants for im-
age retrieval. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19:530–535, 1997. 1

[17] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and
D. Schmalstieg. Pose tracking from natural features on mo-
bile phones. In Proc. ISMAR 2008, Cambridge, UK, Sept.
15–18 2008. 2, 8

[18] S. A. Winder and M. Brown. Learning local image descrip-
tors. In Computer Vision and Pattern Recognition, 2007.
CVPR ’07. IEEE Conference on, pages 1–8, 2007. 2


