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Overview of tracking
• Trackers have complementary properties

◦ Robust, drift free, accurate, efficient, etc. . .

• Failures are also complementary
◦ Fragile, drift, inaccurate, etc. . .

• Combining trackers combines strengths

• 6 DOF (degrees of freedom) tracking (position and
orientation in 3D)

• Robust feature based tracker
◦ New feature detector

• Edge based tracker

• Combining the trackers
◦ Much better



Point based tracking
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Position optimization

• Sometimes> 90% outliers (even with SIFT!)
◦ Robust optimize required

• Use EM
◦ Mixture model is

Gaussian (inliers) + uniform (outliers)

1. ComputeP (match∈ inliers | µ, mixture model)
2. Recomputeµ (using Gauss-Newton)
3. Recompute mixture model

• SSD has some information about inlier probability
◦ If only we knew the relationship...



Matching prior
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EMFeature

to

matches optimize
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Smooth mapping

1 frame delay



Matching prior
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• EM provides probability that a match is correct

• SSD for each match is known

• Compute smooth function mapping SSD to probability

• Use function to compute priors for each match next
frame



Matching prior
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• EM provides probability that a match is correct

• SSD for each match is known

• Compute smooth function mapping SSD to probability

• Use function to compute priors for each match next
frame



2D example - Motion tracking



Analysis

• Cel style animation - foreground and background can
appear anywhere

• 3 kinds of match
◦ Background (small offset)
◦ Motion (many points with coherent offset)
◦ Mismatch (ransom offset)

• Model offsets as GMM

• ComputeP (match∈ background| SSD),
P (match∈ motion| SSD),
P (match∈ mismatches| SSD)
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2D example

• Not really tracking!

• Very simplistic:
◦ No model of car
◦ No motion model
◦ No background model
◦ Exactly one motion per frame modelled

• . . . but it still works

• Possible improvements
◦ Better modelling
◦ Combining with other trackers



Back to 6 DOF tracking...
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• Point based tracking
◦ Requires

⋆ 3D point cloud
◦ Provides

⋆ Robust differential measurements...
⋆ ...with approximately Gaussian posterior



Measurement Properties

• Point based tracking
◦ Requires

⋆ 3D point cloud
◦ Provides

⋆ Robust differential measurements...
⋆ ...with approximately Gaussian posterior

• Relies on full frame matching



Robust differential measurements

1 3

Detect and match features in

next frame

• Full frame matching makes it robust to large motions

• Detecting features in a whole frame is slow

• Matching can beO(n2)

• Solution to detection is...



FAST feature detection



The FAST feature detector
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The FAST feature detector
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• ≥ 12 contiguous pixels brighter thanp+threshold

• Rapid rejection by testing 1, 9, 5 then 13

• 1.59ms (Opteron 2.6GHz) - 8% of available CPU time

• Source code available

• http://savannah.nongnu.org/projects/libcvd



Problems

• Corners are clustered together
◦ Use non maximal suppression
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Problems

• Corners are clustered together
◦ Use non maximal suppression

V = max

{∑

(pixel values− p) if (value− p) > t
∑

(p − pixel values) if (p − value) > t

◦ Bias bigger differences over more points

• High speed test does not generalize well ton < 12

• Choice of high speed test is not optimal

• Results of test are thrown away

• Learn question ordering



Analysis of pixels
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Analysis of pixels

p

• Pixels are either:
◦ Much brighter
◦ Much darker
◦ Similar

• Ring represented as
ternary vector

• Extract vectors forALL
pixels



Ask ternary questions

• List of all potential features:
◦ Ternary vector
◦ Is it a feature?

• Question splits list in to 3 sublists

• Query each sublist

• Recurse until list contains all features or all non
features

• Use questions on new feature



Output C++ code

A long string of nested if-else statements:

. . . which continues for 2 more pages.



Choosing questions

• Minimize average number of questions per feature

• Choose question to eliminate largest number of
features

Or

• Use entropy
◦ Entropy of a list depends on distribution of features
◦ Questions yield information
◦ Total entropy of sublists is less

• Choose questions to maximize entropy gain
(This is the ID3 algorithm)

Using entropy is better



Example tree
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Example tree
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How FAST?

Percentage of available CPU time (typical video)

Detector 2.6 GHz (%) 850 MHz (%)
New FAST 5.4 21.7
FAST 7.45 48.5
DoG 301 1280
SUSAN 37.9 137.5
Harris 120 830

• New FAST: 2.2 questions per feature



Is it any good...?

An example failure mode:

• Ring misses thin quantized lines

• ‘Obvious’ corners missed



Compare against others

• Harris

• Shi/Kanade and Tomasi

• SUSAN

• Multiscale DoG (used by SIFT)

• Harris-Laplace



Comparison methodology

Is the same real-world 3D point detected from multiple
views?

to match frame 2
Warp frame 1

Detect features in frame 1 Detect features in frame 2

warped feature
compare 

positions to detected
features in frame 2

Repeat for all pairs in a sequence



Data sets

Affine (14 images)

Geometric (15 images)

Bas-relief (8 images)



Which FAST is the best?
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How good is FAST?

Geometric
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How good is FAST?

Bas-relief
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Noise performance
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Noise performance



Conclusions on FAST

• Very fast
◦ 190 MPixels/s (1.48 Gi b/s)!
◦ Used machine learning to learn for speed

• Produces high quality features
◦ Results from real features from representative

images



Back to tracking



Robust differential measurements

1 3

Detect and match features in

next frame

• Full frame matching makes it robust to large motions

• Detecting features in a whole frame is slow

• Matching can beO(n2)
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Efficient feature matching
Increasing mean
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• Sort features by mean value of feature vectors

• Find closest mean by binary search

• Search outwards

• SSD between means bounds search

• Best match has lowest SSD



Conclusions on point tracking

Statistical properties:

• Point based tracking
◦ Requires

⋆ 3D point cloud
◦ Provides

⋆ Robustdifferential measurements...
⋆ ...with approximately Gaussian posterior

Conclusion:

• Useful, but incomplete.



Edge based tracking
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Edge based tracking

• Start from position prior

• Search along edge-normal lines

• Adjust position to minimize errors

• Gives drift free measurements
◦ Model is static



Good prior needed

• Edges are a step change in intensity

• Correspondence is hard—pick closest edge



Good prior needed

• Edges are a step change in intensity

• Correspondence is hard—pick closest edge

• Prior must be good, or the wrong edge will be found
◦ Correct edge might be nowhere near



Non Gaussian posterior

• Correct correspondences
◦ Tracking is accurate

• Incorrect correspondences
◦ Tracking is inaccurate—even if prior is good



Non Gaussian posterior

• Correct correspondences
◦ Tracking is accurate

• Incorrect correspondences
◦ Tracking is inaccurate—even if prior is good



Summary

• Edge based tracking
◦ Requires

⋆ 3D geometric model
⋆ Good pose prior

◦ Provides
⋆ Drift free measurements
⋆ Non Gaussian posterior

• Point based tracking
◦ Requires

⋆ 3D point cloud
◦ Provides

⋆ Robust differential measurements...
⋆ ...with approximately Gaussian posterior



Sensor fusion



Combining measurements
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Multimodal posterior propagation

• Either tracker can be wrong
◦ Edge tracker can get correspondence wrong
◦ Point based tracker can drift

• Posterior can be multimodal
◦ Simple solutions do not work



Multimodal posterior propagation

Corner
tracking

Edge
tracking

Corner
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n-1 n n+1Frame

• Either tracker can be wrong
◦ Edge tracker can get correspondence wrong
◦ Point based tracker can drift

• Posterior can be multimodal

• Evaluate modesnext frame when more data arrives



Results



Results - Camera shake

• Pick up camera and shakereally hard

• Mainly tests point tracker

• Can you follow the video? I can’t (but my tracker can)



Results - Camera shake
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• 6Hz Camera shake

• Up to 204 pixels prediction error (89 average)



Results - Strong unmodelled edges

• Strong unmodelled edges frequently break the edge
tracker

• Breaks without proper sensor fusion



Results - Handheld camera

Pick up the camera and run around the lab



Summary

• An efficient, robust point based tracker
Built using:

◦ A very fast, repeatable feature detector
⋆ Now used in crowd tracking, SLAM,

localisation...
◦ Online learning of match quality

• Careful modelling allows combination of trackers for
extra robustness

• Technologies described apply more widely than to 6
DOF tracking



Any questions?









Model based tracking

Edge
tracking FAST features

Robust optimize

Point tracking

Combine for
robust tracking

• Different failure modes
◦ Combine for extra robusteness
◦ Combination is difficult

⋆ Statistics are non Gaussian
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