Accurate extraction of reciprocal space information from transmission electron microscopy images

Edward Rosten and Susan Cox

LA-UR-06-8287

Diffraction pattern is the *Power Spectral Density* of the crystal structure.

- TEM, X-ray diffraction, ...
- Manganites, Uranium, Nicklates, Cuprates, ...

Superlattice reflections

Superlattice reflections

Superlattice reflections

TEM imaging

Image can be recorded on:

• CCD

- Linear response
- Not very robust
 - \star Short exposure times only

• Film

- Nonlinear response
 * Response varies
- Very robust
 - * Long exposure times possible

Images must be acquired on film.

Film response correction

- Noise is constant over the image
 Shot noise is small
- Noise amplitide is small

$$\eta \approx \frac{\mathrm{d}f}{\mathrm{d}e}$$

f(e) = film intensity at electron intensity e $\frac{df}{de} = \text{film sensitivity}$ $\eta = \text{noise intensity}$

Computing noise intensity

- 1. Smooth image
 - Horizontal smoothing by fitting local polynomial
 - Polynomial prevents spreading of spots
- 2. Smoothed image contains 'true' pixel values
- 3. Bin pixels according to 'true' intensity

4.
$$\eta_i = \sigma_i$$

Film response

Film response

Film response

Mean shift:

- Compute centroid of pixels in window
- Move window centre to computed centroid

Mean shift:

• Removing background by filtering improves accuracy

- Two points along a* define grid
- Grid is inaccurate away from points

• Mean shift optimizes all points

Parent lattice refinement

Model of imaging system:

 $\begin{pmatrix} sx \\ sy \\ s \end{pmatrix} = \begin{pmatrix} h_{1,1} & \dots & \dots & h_{1,2n+1} \\ h_{2,1} & \dots & \dots & h_{2,2n+1} \\ 0 & \dots & 0 & h_{3,2n-1} & h_{3,2n} & 1 \end{pmatrix} \begin{pmatrix} X^n \\ Y^n \\ \vdots \\ X \\ Y \\ 1 \end{pmatrix}$

(X,Y) = pixel coordinate (x,y) = coordinate on grid

Find h_{1,1},..., h_{3,2n} using reweighted least squares
n = 2 is sufficient

Parent lattice refinement

- Intensity is un-normalized probability distribution
- Spots are roughly Gaussian
- Background is roughly constant
 - \rightarrow Model as three component mixture model
- Fit mixture model with EM

Image

Background

Image

Spots

Background

Image

Spots

Background

Image

Spots

Background

Image

Background

Image

Background

 ${\rm Cor}$

Image

Spots

Background

 ${\rm Cor}$

Image

Spots

Background

 ${\rm Cor}$

Image

Spots

Background

 $\forall \forall \triangleright \land 0$

Image

Spots

Background

 ${\rm ADD}$

Image

Spots

Background

 \square
Image

Spots

Background

 ${\rm ADD}$

2 of 40

Image

Spots

Image

4 of 40

Spots

Image

Spots

Image

6 of 40

Spots

Image

7 of 40

Spots

Image

3 of 40

Spots

Image

9 of 40

Spots

Image

) of 40

Spots

Image

Spots

Image

2 of 40

Spots

Image

Spots

Image

of 40

Spots

Image

*

Spots

Image

Spots

Image

Spots

Image

8 of 40

Spots

Image

of 40

Spots

Image

6 of 40

Spots

Image

Spots

Image

0 of 40

Spots

Robust mean computation

Robust mean computation

Use EM to compute the mean

Evaluation: Uncorrelated noise

Evaluation: Uncorrelated noise

Evaluation: Correlated noise

Results on La_{0.5}Ca_{0.5}MnO_3

 $3\sigma = 0.02$ pixels

Any Questions?