
Fusing points and lines for high
performance real-time tracking

Ed Rosten, Tom Drummond

University of Cambridge



Model based tracking

Edge
tracking FAST features

Robust optimize

Point tracking

Combine for
robust tracking

• Different failure modes
◦ Combine for extra robusteness
◦ Combination is difficult

? Statistics are non Gaussian



Edge based tracking

• Start from position prior

• Search along edge-normal lines

• Adjust position to minimize errors

• Gives drift free measurements
◦ Model is static



Edge based tracking

• Start from position prior

• Search along edge-normal lines

• Adjust position to minimize errors

• Gives drift free measurements
◦ Model is static



Edge based tracking

• Start from position prior

• Search along edge-normal lines

• Adjust position to minimize errors

• Gives drift free measurements
◦ Model is static



Edge based tracking

• Start from position prior

• Search along edge-normal lines

• Adjust position to minimize errors

• Gives drift free measurements
◦ Model is static



Good prior needed

• Edges are a step change in intensity

• Correspondence is hard—pick closest edge

• Prior must be good, or the wrong edge will be found
◦ Correct edge might be nowhere near



Good prior needed

• Edges are a step change in intensity

• Correspondence is hard—pick closest edge

• Prior must be good, or the wrong edge will be found
◦ Correct edge might be nowhere near



Non Gaussian posterior

• Correct correspondences
◦ Tracking is accurate

• Incorrect correspondences
◦ Tracking is inaccurate—even if prior is good



Non Gaussian posterior

• Correct correspondences
◦ Tracking is accurate

• Incorrect correspondences
◦ Tracking is inaccurate—even if prior is good



Point based tracking

1

Detect features

Project features on to model.

Drift occurs here

Detect and match features in

next frame

Alter pose to minimize

reprojection error



Point based tracking

1

2

Detect features

Project features on to model.

Drift occurs here

Detect and match features in

next frame

Alter pose to minimize

reprojection error



Point based tracking

1

2

3

Detect features

Project features on to model.

Drift occurs here

Detect and match features in

next frame

Alter pose to minimize

reprojection error



Point based tracking

1 3

42

Detect features

Project features on to model.

Drift occurs here

Detect and match features in

next frame

Alter pose to minimize

reprojection error



Point based tracking

1

2

3

4

Detect features

Project features on to model.

Drift occurs here

Detect and match features in

next frame

Alter pose to minimize

reprojection error



The FAST feature detector

• ≥ 12 contiguous pixels brighter than p+threshold

• Rapid rejection by testing 1, 9, 5 then 13

• 1.59ms (Opteron 2.6GHz) - 8% of available CPU time

• Source code available (see paper for URL)

• 16 test pixels used for feature vector

• SSD used for matching between frames



The FAST feature detector

p

16 1 2
3

4
5
6

7
9 810

11

12
13
14

15

• ≥ 12 contiguous pixels brighter than p+threshold

• Rapid rejection by testing 1, 9, 5 then 13

• 1.59ms (Opteron 2.6GHz) - 8% of available CPU time

• Source code available (see paper for URL)

• 16 test pixels used for feature vector

• SSD used for matching between frames



The FAST feature detector

p

16 1 2
3

4
5
6

7
9 810

11

12
13
14

15

• ≥ 12 contiguous pixels brighter than p+threshold

• Rapid rejection by testing 1, 9, 5 then 13

• 1.59ms (Opteron 2.6GHz) - 8% of available CPU time

• Source code available (see paper for URL)

• 16 test pixels used for feature vector

• SSD used for matching between frames



The FAST feature detector

p

1

9

• ≥ 12 contiguous pixels brighter than p+threshold

• Rapid rejection by testing 1, 9

• Rapid rejection by testing 1, 9, 5 then 13

• 1.59ms (Opteron 2.6GHz) - 8% of available CPU time

• Source code available (see paper for URL)

• 16 test pixels used for feature vector

• SSD used for matching between frames



The FAST feature detector

p

1

5

9

• ≥ 12 contiguous pixels brighter than p+threshold

• Rapid rejection by testing 1, 9, 5

• Rapid rejection by testing 1, 9, 5 then 13

• 1.59ms (Opteron 2.6GHz) - 8% of available CPU time

• Source code available (see paper for URL)

• 16 test pixels used for feature vector

• SSD used for matching between frames



The FAST feature detector

p

1

5

9

13

• ≥ 12 contiguous pixels brighter than p+threshold

• Rapid rejection by testing 1, 9, 5 then 13

• 1.59ms (Opteron 2.6GHz) - 8% of available CPU time

• Source code available (see paper for URL)

• 16 test pixels used for feature vector

• SSD used for matching between frames



The FAST feature detector

p

1

5

9

13

• ≥ 12 contiguous pixels brighter than p+threshold

• Rapid rejection by testing 1, 9, 5 then 13

• 1.59ms (Opteron 2.6GHz) - 8% of available CPU time

• Source code available (see paper for URL)

• 16 test pixels used for feature vector

• SSD used for matching between frames



The FAST feature detector

p

16 1 2
3

4
5
6

7
9 810

11

12
13
14

15

• ≥ 12 contiguous pixels brighter than p+threshold

• Rapid rejection by testing 1, 9, 5 then 13

• 1.59ms (Opteron 2.6GHz) - 8% of available CPU time

• Source code available (see paper for URL)

• 16 test pixels used for feature vector

• SSD used for matching between frames



Position optimization

• Sometimes > 90% outliers (even with SIFT!)
◦ Robust optimize required

• Use EM
◦ Mixture model is

Gaussian (inliers) + uniform (outliers)

• SSD has some information about inlier probability
◦ If only we knew the relationship...



Matching prior

0 2500 5000
0

0.5

1

Sum squared differenceP
ro

ba
bi

lit
y 

of
 c

or
re

ct
 m

at
ch

Raw data
Temporally smoothed
Function
Frames 100−760

• EM provides probability that a match is correct

• SSD for each match is known

• Compute smooth function mapping SSD to probability

• Use function to compute priors for each match next
frame



Matching prior

10
−2

10
−1

10
0

0

0.5

1

Proportion of inliersP
ro

ba
bi

lit
y 

of
 c

on
ve

rg
en

ce

EM
EM with prior

• EM provides probability that a match is correct

• SSD for each match is known

• Compute smooth function mapping SSD to probability

• Use function to compute priors for each match next
frame



Measurement Properties

• Edge based tracking
◦ Requires

? 3D geometric model
? Good pose prior

◦ Provides
? Drift free measurements
? Non Gaussian posterior

• Point based tracking
◦ Requires

? 3D point cloud
◦ Provides

? Robust differential measurements...
? ...with approximately Gaussian posterior



Sensor fusion

Corner
tracking

Edge
tracking

Corner
tracking

Corner
tracking

Edge
tracking

-

-

?

6 ?
-

-

?
Pick best

n-1 n n+1Frame

• Either tracker can be wrong
◦ Edge tracker can get correspondence wrong
◦ Point based tracker can drift

• Posterior can be multimodal
◦ Simple solutions do not work

• Evaluate modes next frame when more data arrives



Sensor fusion

Corner
tracking

Edge
tracking

Corner
tracking

Corner
tracking

Edge
tracking

-

-

?

6 ?
-

-

?
Pick best

n-1 n n+1Frame

• Either tracker can be wrong
◦ Edge tracker can get correspondence wrong
◦ Point based tracker can drift

• Posterior can be multimodal

• Evaluate modes next frame when more data arrives



Results - Strong unmodelled edges

Strong unmodelled edges frequently break the edge tracker



Results - Camera shake

• Pick up camera and shake really hard

• Can you follow the video? I can’t (but my tracker can)



Results - Camera shake

0 0.5 1 1.5 2 2.5 3
−50

0

50

100

Time / s

A
ng

le
 / 

de
gr

ee
s

• 6Hz Camera shake

• Up to 204 pixels prediction error (89 average)



Results - Handheld camera

Pick up the camera and run around the lab



Summary

• A very fast feature detector

• An efficient, robust point based tracker

• Online modelling of match quality

• Careful modelling resulting in robust combination of
trackers.

Any questions?







Efficient feature matching
Increasing mean

-

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

¤

-¾ -¾

• Sort features by mean value of feature vectors

• Find closest mean by binary search

• Search outwards

• SSD between means bounds search

• Best match has lowest SSD



Efficient feature matching
Increasing mean

-

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

¤

-¾ -¾

• Sort features by mean value of feature vectors

• Find closest mean by binary search

• Search outwards

• SSD between means bounds search

• Best match has lowest SSD



Efficient feature matching
Increasing mean

-

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

¤

-¾

-¾

• Sort features by mean value of feature vectors

• Find closest mean by binary search

• Search outwards

• SSD between means bounds search

• Best match has lowest SSD



Efficient feature matching
Increasing mean

-

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

¤

-¾

-¾

• Sort features by mean value of feature vectors

• Find closest mean by binary search

• Search outwards

• SSD between means bounds search

• Best match has lowest SSD



Efficient feature matching
Increasing mean

-

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

¤

-¾

-¾

• Sort features by mean value of feature vectors

• Find closest mean by binary search

• Search outwards

• SSD between means bounds search

• Best match has lowest SSD





How FAST?

Percentage of available CPU time (typical video)

Detector 2.6 GHz (%) 850 MHz (%)
New FAST 5.4 21.7
FAST 7.45 48.5
DoG 301 1280
SUSAN 37.9 137.5
Harris 120 830


	Model based tracking
	Edge based tracking
	Good prior needed
	Non Gaussian posterior
	Point based tracking
	The FAST feature detector
	Position optimization
	Matching prior
	Measurement Properties
	Sensor fusion
	Results - Strong unmodelled edges
	Results - Camera shake
	Results - Camera shake
	Results - Handheld camera
	Summary
	
	
	Efficient feature matching
	
	How FAST?

