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Model based tracking

Edge
tracking FAST features

Robust optimize

Point tracking

Combine for
robust tracking

• Different failure modes
◦ Combine for extra robusteness
◦ Combination is difficult

? Statistics are non Gaussian



Edge based tracking

• Start from position prior

• Search along edge-normal lines

• Adjust position to minimize errors

• Gives drift free measurements
◦ Model is static
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Good prior needed

• Edges are a step change in intensity

• Correspondence is hard—pick closest edge

• Prior must be good, or the wrong edge will be found
◦ Correct edge might be nowhere near
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Non Gaussian posterior

• Correct correspondences
◦ Tracking is accurate

• Incorrect correspondences
◦ Tracking is inaccurate—even if prior is good
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Point based tracking
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The FAST feature detector

• ≥ 12 contiguous pixels brighter than p+threshold

• Rapid rejection by testing 1, 9, 5 then 13

• 1.59ms (Opteron 2.6GHz) - 8% of available CPU time

• Source code available (see paper for URL)

• 16 test pixels used for feature vector

• SSD used for matching between frames
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Position optimization

• Sometimes > 90% outliers (even with SIFT!)
◦ Robust optimize required

• Use EM
◦ Mixture model is

Gaussian (inliers) + uniform (outliers)

• SSD has some information about inlier probability
◦ If only we knew the relationship...



Matching prior
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• EM provides probability that a match is correct

• SSD for each match is known

• Compute smooth function mapping SSD to probability

• Use function to compute priors for each match next
frame
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Measurement Properties

• Edge based tracking
◦ Requires

? 3D geometric model
? Good pose prior

◦ Provides
? Drift free measurements
? Non Gaussian posterior

• Point based tracking
◦ Requires

? 3D point cloud
◦ Provides

? Robust differential measurements...
? ...with approximately Gaussian posterior



Sensor fusion
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• Either tracker can be wrong
◦ Edge tracker can get correspondence wrong
◦ Point based tracker can drift

• Posterior can be multimodal
◦ Simple solutions do not work

• Evaluate modes next frame when more data arrives
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Results - Strong unmodelled edges

Strong unmodelled edges frequently break the edge tracker



Results - Camera shake

• Pick up camera and shake really hard

• Can you follow the video? I can’t (but my tracker can)



Results - Camera shake
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• 6Hz Camera shake

• Up to 204 pixels prediction error (89 average)



Results - Handheld camera

Pick up the camera and run around the lab



Summary

• A very fast feature detector

• An efficient, robust point based tracker

• Online modelling of match quality

• Careful modelling resulting in robust combination of
trackers.

Any questions?







Efficient feature matching
Increasing mean
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• Sort features by mean value of feature vectors

• Find closest mean by binary search

• Search outwards

• SSD between means bounds search

• Best match has lowest SSD



Efficient feature matching
Increasing mean

-

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

¤

-¾ -¾

• Sort features by mean value of feature vectors

• Find closest mean by binary search

• Search outwards

• SSD between means bounds search

• Best match has lowest SSD



Efficient feature matching
Increasing mean

-

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

¤

-¾

-¾

• Sort features by mean value of feature vectors

• Find closest mean by binary search

• Search outwards

• SSD between means bounds search

• Best match has lowest SSD



Efficient feature matching
Increasing mean

-

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

¤

-¾

-¾

• Sort features by mean value of feature vectors

• Find closest mean by binary search

• Search outwards

• SSD between means bounds search

• Best match has lowest SSD



Efficient feature matching
Increasing mean

-

¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

¤

-¾

-¾

• Sort features by mean value of feature vectors

• Find closest mean by binary search

• Search outwards

• SSD between means bounds search

• Best match has lowest SSD





How FAST?

Percentage of available CPU time (typical video)

Detector 2.6 GHz (%) 850 MHz (%)
New FAST 5.4 21.7
FAST 7.45 48.5
DoG 301 1280
SUSAN 37.9 137.5
Harris 120 830
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