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Abstract

This paper addresses the problem of real-time visual tracking of struc-
tures with curved surfaces by localising the apparent contour in each frame
of an image sequence. A scheme is presented for rapidly rendering the ap-
parent contour from a predicted pose. Errors between this contour and the
observed contour are then used to update the pose estimate for tracking. The
rendering algorithm makes use of two contributions. Firstly, a differential
equation is derived which traces out the contour generators on an iso-surface
of a scalar field. Secondly a set of rules for determining the visibility of each
part of the apparent contour is presented. These techniques are used to ren-
der structures of moderate complexity in under 30ms which permits real-time
tracking at video frame rate.

1 Introduction

A significant proportion of model-based computer vision is concerned with the use of
polyhedral models. However, there is a large class of important structures (including
humans) which are non-polyhedral in nature. For such structures the principal feature is
the apparent contour which is the image of those parts of the surface that are tangent to
the viewing ray. This feature is interesting because it moves relative to the structure in a
viewpoint dependent manner which can cause problems for some algorithms.

This paper addresses the problem of real-time visual tracking of curved surfaces using
the apparent contour. This is an important technology which has applications including
gesture tracking for user interfaces. In order to perform these tasks, it is necessary to
achieve rapid computation of the apparent contour for a predicted view. This is then
compared to the observed contour in order to estimate the error between the predicted and
true viewpoints. This paper presents two key contributions which enable rapid rendering.
Firstly, a differential equation is derived which is used to trace out the apparent contour
generator (being those points on the surface which project onto the apparent contour).
Secondly a fast method is presented for breaking the contour generator up into segments
and computing the visibility of each segment. Finally, it is shown how this contour may
be used with standard edge-based tracking techniques to obtain real-time performance.



1.1 Background

Apparent contours are important when structure and motion problems are applied to non-
polyhedral objects. Deformations of the apparent contour have been used to determine
camera motion [9] and also the structure of the object under observation[10].

Apparent contours are also important in model-based tracking. One method of track-
ing involves rendering the apparent contour and then comparing it to the image. [8, 4]
use the rendered contour to initiate local searches for image edges, for real-time tracking
of polyhedral objects and to some extent curved objects[3]. Another technique is to con-
verge an active contour on moving edges in the image and compare this to the rendered
apparent contour[2].

Fua and Pl̈ankers[12, 13] use dense stereo to find the pose and structural parameters
of the object. They also note the importance of silhouette (apparent contour) information
and integrate this with the dense stereo information by initiating searches based on the
predicted position of the object.

Model-based tracking requires a model which must describe the curved surfaces pres-
ent. The description used affects the accuracy of the model and the speed at which it can
be processed. Some of the more popular ways are

1. Collections of curved primitives, such as truncated quadrics[3] and tapered super-
quadrics[6]. This technique is appealing since these shapes can be dealt with in a
computationally efficient manner, which is necessary for real-time tracking. Un-
fortunately, there are relatively few things in the real world which are accurately
modelled by collections of these shapes.

2. Polygonal meshes. Another aproach is to approximate the surface of the object
with a polygonal mesh [11] and then treat the object as a polyhedral model[8, 4].
Very large meshes are required in order to accurately capture the shape of complex
objects and these can become computationally inefficient.

3. Implicit surfaces (used in this paper). These are defined as the isosurface of a
scalar function inR3. Primitive implicit shapes can be smoothly combined by sum-
ming their functions. There are several common kinds or primitives. Radial basis
functions are widely used and are attractive from a modelling point of view since
they can model smooth surfaces of arbitrary complexity and techniques exist[7]
for fitting them to known 3-D data. Metaballs[12] (Gaussians inR3) are another
commonly used primitive. These are essentially a type of non-isotropic radial basis
functions. Since the surfaces are not defined explicitly, it can be computationally
slow to locate them.

A thorough mathematical analysis of the properties of curved surfaces is given in [1]
and [5]. An analysis of apparent contours of implicit shapes under orthographic projection
is given in [14].

The current techniques can be split in to two groups, relatively inaccurate models
which can be processed efficiently enough to track them in real time and more accurate
models which require more processing than can be done in real-time. This paper presents
a method for rapidly rendering the apparent contours of implicit shapes so that the accu-
rate models afforded by these can be tracked in real-time. Section2 derives a differential
equation which can be used to rapidly plot an apparent contour in three dimensions. Sec-
tion3describes a set of rules that allow the visibility of apparent contours to be determined



by looking at intersections between them, thus reducing the amount of searching needed.
Section4 introduces a set of algorithms which allow rapid searches to be performed on
chains of connected line segments, allowing intersections to be calculated very rapidly.
Finally, section5 show how these objects can be tracked.

2 Calculating the Occluding Contour

A 3D shape,S can be defined by a scalar functionf of R3. A point x lies insideS if
f(x) > 0 and on the suface,U , of S if

f(x) = 0. (1)

If S is viewed from a camera centred atc, one of the most notable features is the outline,
or visible apparent contourof the shape. For a pointp on this contour, there is a cor-
responding pointx on U which projects top. A ray back projected fromp will be at a
tangent toU atx, so

(x−c) ·∇f(x) = 0 (2)

(since∇f(x) is normal to the surface). The points onU satisfying this equation define the
contour generators, which are curves inR3. The projection of this curve by the camera
at c is theapparent contour. Some parts of it are occluded bySand it is the visible parts
which make up thevisible apparent contour.

Equations1 and2 each provide one constraint. By combining these we get a one
dimensional set of solutions which describe the contour generators. To solve the equation
for x, we start by parameterizing the contour generator with the variablet, such that
x = x(t). Differentiating Equation1 with respect tot gives

ẋ ·∇f(x) = 0. (3)

Differentiating Equation2 with respect tot gives:

ẋ ·∇f(x)+(x−c) ·
(

H [ f(x)] ẋ
)

= 0 (4)

whereH is the Hessian operator. Substituting in Equation3 and writingH(x) = H [ f(x)]
gives

(x−c) · (H(x) ẋ) = 0. (5)

By transposing, we get
ẋ · (H(x)(x−c)) = 0 (6)

since the Hessian matrix is symmetric. Equations3 and6 give orthogonality constraints
on ẋ, soẋ can be defined as

ẋ = α
(

H(x)(x−c)
)

×∇f(x) , (7)

with α giving an arbitrary scale.
The contour generator is now described by a starting point,x(0) and a first order

differential equation. This can be solved using standard ODE integration techniques and
an example is given in Figure1. The visible apparent contour in B looks quite simple, but
the contour generator corresponding to this is quite elaborate (D).

Equation7 constrains the contour generator to never leaveU and so providing it does
not become singular[14] and the surface has finite complexity (so the contour is of finite
length), it defines closed contours onU .
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Figure 1: (A) A spoked wheel. (B) The visible apparent contour. (C) The apparent contour. (D)
The contour generator from C, viewed slightly from above.

2.1 Calculating the Contour Generator

Equation7 defines the contour generator for any implicit surface. In this paper, a sum of
Gaussians inR3 are used to define the shape. The implicit function used has the form:

gi(x) = βie
(x−µi)TCi(x−µi) (8)

f(x) = ∑
i

gi(x)− 1
2

(9)

whereCi is the inverse covariance matrix for Gaussiani and is a real symmetric matrix.
The gradient and Hessian are given by:

∇f(x) =−∑
i

Ci (x−µi)gi(x) (10)

H(x) = ∑
i

(

2Ci (x−µi)
T (x−µi)Ci −Ci

)

gi(x). (11)

Sinceẋ is only defined up to an arbitrary scale, it has been set to be of unit length. The
curve was then integrated with a fixed step size fourth order Runge-Kutta solver.

Equation7 defines any given contour, provided that a suitable starting point has been
found. Real-time tracking requires that suitable starting points are found rapidly. The
process to achieve this is split in to three stages. The first is an off-line stage which
scatters points randomly over the surface of the shape. This is done by scattering points
randomly over the surface of each of the individual ellipsoid and then moving the point
to the surface of the shape using Newton’s method. At run time, points on the surface of
the shape close to the contour generator are selected by selecting points where the surface
is nearly parallel the viewing ray. An iteration scheme involving a Newton-Raphson step
along the ray (to satisfy Equation2) followed by a step towards the surface is used to
move the points to the contour generator. The third step rejects points close to an existing
contour using the rapid search techniques described in section4.

3 Determining the visibility of the apparent contour

Equation7 yields a set of closed contours. Not all parts of these contours will necessarily
be visible to the camera due to occlusion byS. A näıve solution to this would be to
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Figure 2: A torus partially occluded by a sphere. (a) rendered image. (b) Apparent contour. (c)
Contour generator of the torus rendered from a different angle.

search along the ray from the camera to each point on each contour generator, testing for
f(x) > 0, but this is very inefficient.

In this section a technique is presented which allows the visibility to be determined
more rapidly. This technique is based on theocclusion depthof a point on a contour
generator which is defined to be the number of times that a ray from the point to the
camera intersectsU . This is a powerful approach because the occlusion depth can only
change at easily identified points as each contour is traversed. The occlusion depth and
hence the visibility of the contour between these points is constant. The visibility of the
least occluded part of each contour can then be determined by propagating information
between the contours.

Figure 2a shows a sphere occluding part of a torus and the image of the contours
generated by Equation7 is shown in Figure2b. The occlusion depth can only change in
two ways. The most obvious occurs when the contour becomes occluded by another part
of S, for example the point labelled 1 in Figure2b. This can easily be detected since it
implies that the contours intersect. A less obvious change in occlusion depth occurs due
to a cusp in the apparent contour, Figure2b, labelled 2. This happens when the viewing
ray is coincident with the contour generator. This is shown in Figure2c. Note that the the
contour generator is always continuous even when there is a cusp in the apparent contour.

3.1 Intersections

When two contours intersect in the image, the one with the generator furthest from the
camera becomes occluded by part ofS. When one part of the contour generator becomes
occluded by another part of the shape, a ray to the occluded part must pass in and out
of the shape again, i.e. it intersectsU twice. At an intersection, therefore, the depth
of the contour is either incremented by two or decremented by two, depending on the
shape of the surface at the foremost contour generator. In order to determine this, the
number of intersections between the ray and the foremost surface is calculated as the ray
is moved along the rearmost contour. To do this, the ray through the pointx1 + λ ẋ2 can
be considered (wherex1 is the point on the foremost surface andẋ2 is the tangent of the
rearmost contour). Intersections between this ray and the foremost surface can then be
represented as:

f
(

(1+α)
(

x1 +λ ẋ2

))

= 0, (12)

whereα parameterizes the position along the ray. Equation12can be solved locally atx1
by performing a Taylor expansion up to second order terms. Since the solution is local,α



andλ are small, so terms inαλ can be ignored, leaving a quadratic equation inα :

α2x1
THx1 +2αλ ẋ2

THx1 +λ 2ẋ2
THẋ2 +2λ ẋ2 ·∇f(x) = 0, (13)

whereH = H
(

x1

)

. The number of solutions forα is given by the sign of the discriminant,
D, of this equation. Atλ = 0, D = 0, confirming that there is a repeated solution, i.e. the
ray just brushesU atx1. DifferentiatingD with respect toλ gives:

d =
∂D
∂λ

∣

∣

∣

∣

λ=0
=−

(

x1
THx1

)

ẋ2 ·∇f(x) . (14)

If this derivative is positive, then going in the direction ofẋ2, D becomes positive, so the
ray intersectsU twice nearx1. That is if the derivative is positive, then the depth of the
rearmost contour increases by two otherwise, the depth decreases by two.

3.2 Cusps

A point, x, on the contour generator can be classified as belonging toinner surfaceor
outer surface. If at x the ray to the camera dives in toS thenx is on an inner surface. If
the ray moves away fromS thenx is on an outer surface. A ray from a point on an inner
surface to the camera has an odd number of intersections withU , so the point has an odd
occlusion depth is occluded invisible.

When a contour generator goes from being on an outer surface to being on an inner
surface, its depth changes by one. At the point where this happens, the contour generator
tangent is parallel to the ray tox as shown in Figure2c. Motion along the generator at this
point results in no motion along the apparent contour in the image, so this appears as a
cusp of the apparent contour. At a cusp, if the tangent of the contour generator is pointing
away from the camera, the occlusion depth increases by one, otherwise it decreases by
one. Essentially, moving away from the camera, the occlusion depth can only increase,
and moving towards the camera can only cause a decrease.

3.3 Propagating depth information between contours

Tests for intersections give the relative change in depth of the contour, but cannot deter-
mine the minimum overall depth (i.e. whether the least occluded part of the contour can
be seen). This can be resolved by propagating information between contours. Rule1 is
an invariant property of the occlusion depths at intersections.

Rule 1 If contour A intersects contourB such thatB becomes occluded, the depth ofB
just before the occlusion must be greater than or equal to the depth ofA at the occlusion.

Application of Rule1 does not necessarily completely determine the visibility of all con-
tours. If after application of this rule a contour contains a segment at depth0 (and hence
is potentially visible) but is completely contained within another contour then it may still
be occluded. In this case a search must be performed to find its depth. The camera can
be searched to findif the ray intersectsU , rather than to find thenumberof intersections
since this is sufficient for determining visibility. The second of these provides more in-
formation, but is slower. Rule1 must be reapplied if the segment is found to be occluded,
since it is an invariant property of the system. After all segments requiring a search have
been tested, then the visibility of every part of the apparent contour is known.



Algorithm 1 Fast proximity detection.

boolProximity (Tree nodeT, Point p, Distanced)
if (p is within d if the bounding box ofT)

if (T is a leaf nodeAND p is within d of the line segment inT)
return true

else
return Proximity (T.left, p, d) OR Proximity (T.right , p, d)

return false
end

Algorithm 2 Fast piecewise linear contour intersection.

form an empty list of pairs of line segments,L

Intersect(Tree Nodem, Tree Noden)
if (bounding boxes ofm andn intersect)

if (m andn are leaf nodes)
if (the line segments inm andn intersect)

add (m, n) to L
else

call Intersect on all pairs of children
end

4 Fast Contour Techniques

In the process of rendering the visible contour, there are three operations which need to be
performed rapidly on the contours and contour generators. These are testing the proximity
of a point to a contour generator, determining if a point is inside a contour and finding all
intersections between contours. The two and three dimensional contours consist of a loop
of connected line segments. The ends of the line segments are at the points generated
by integrating Equation7. If the step size needed for accurate integration is small, then
the contours can consist of a large number of line segments. As a result, a simplistic
implementation of the tests runs very slowly.

A fast method of performing these tests has been developed which makes use of a
balanced binary tree. The leaves of this tree contain a line segment and a bounding box.
For each node, a bounding box is computed that exactly contains the bounding boxes of
the child nodes. To determine if a point is near a contour, Algorithm1 is used. The worst
case execution time isO(N), but the typical running time isO(logN). Algorithm 2 is
used to calculate intersections between contours rapidly. The worst case execution time
is O

(

N2
)

, since there can be at mostO
(

N2
)

intersections, but the typical running time
is O(logN). If a point is inside a polygon, then an infinite ray from that point will cross
an odd number of edge segments of that polygon. A similar algorithm is used to perform
this test in approximately logarithmic time.

5 Tracking

In order to track the object from an image, the derivatives of visible boundary points
(in the image) with respect to the motion parameters must be calculated. As the camera



Figure 3: Cusps are very clear in the rendered outline of the torus (left), but in practice, they are
very hard to localise in the image (right).

moves, the boundary moves in the image. One component of this motion is due to the
motion of the contour generator relative to the camera. The shape of the contour depends
on the position of the camera, i.e. as the camera moves, the contour slips acrossU . This
is the second component of the image motion.

The contour generator is by definition at a point where the surface is at a tangent to
the viewing ray. Any small motion across the surface will therefore be along the viewing
ray and will cause no image motion. More formally,x0 is a point on the contour generator
andx1 is the point onU which corresponds tox0 after a small camera motion. A corre-
spondence plane is described by the camera centre,c, the initial point,x0 and the surface
normal,∇f

(

x0

)

. The position ofx1 can then be written as

x1 = x0 +a
(

x0−c
)

+b
(

∇f
(

x0

))

. (15)

We also know thatx1must lie onU , i.e.

f
(

x0 +a
(

x0−c
)

+b
(

∇f
(

x0

)))

= 0. (16)

Performing a Taylor series expansion of this up to first order terms gives

f
(

x0

)

+∇f
(

x0

)(

a
(

x0−c
)

+b
(

∇f
(

x0

)))

= 0. (17)

Substituting Equation1 and Equation2 gives

b
∣

∣

∣

∣∇f
(

x0

)∣

∣

∣

∣ = 0 (18)

and thereforeb = 0. Using this correspondence, then,x0 moves to

x1 = x0 +a(x0−c). (19)

This proves that motion ofx0 is only along a ray to a camera, and therefore produces
no image motion ofp. For small motions, the visual motion of the contour generator is
equivalent to the visual motion of a rigid wire frame which can be tracked using a standard
technique [4].

When there is a cusp in the image, it is possible for the motion of the cusp to lie
outside the correspondence plane. When this happens, the approximation of the motion
is inaccurate, which would make tracking of cusps inaccurate. This point has not been
addressed because cusps are very weak image features, as can be seen in Figure3. Since
they are so weak, they are not particularly useful features to track.
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Figure 4:(a) the model of the lamp. (b)–(d) the lamp being tracked in various poses.

5.1 Results

The system was tested by tracking a simple object (a torus) and a more complex object
(a desk lamp). The torus can be seen in Figure3. Figure4a is of a rendered image of the
lamp model. Figure4b–d show the lamp being tracked in various orientations. The system
was fast enough to track the incoming video stream in real-time (25 frames per second).
The model of the lamp contains 13 primitives (143 parameters), and approximately0.025
is required to calculate the visible apparent contour.

6 Conclusion and future work

A method has been presented that allows real time tracking of moderately complex ob-
jects modelled with an implicit surface. The system is capable of tracking despite some
inaccuracies in the model for example Figure4d. It is possible to produce very accurate
models of shapes using implicit surfaces, but such models can be difficult to construct by
hand. Future work will examine the automatic refinement of approximate models.

In calculating the occluding contour, the bulk of the time is spent evaluating the im-
plicit function and its derivatives, since exponentials are computationally expensive. In-
creasing the complexity causes the computation time to increase for two reasons. First,
with more primitives, the function takes longer to calculate at each point. Fortunately,
Gaussians also fall away very quickly towards zero and so only have a short range affect.



Future work will reduce the computation required by building a hierarchical model to
minimize the number of evaluations needed for each point. Secondly, a complex models
have a range of primitives with different sizes and scales. The larger the range of primi-
tives, the larger the range of step sizes required for accurate ODE integration on different
parts of the contour generator. Future work can improve efficiency by using more ad-
vanced (including variable step) integration techniques, to reduce the number of function
evaluations required. These future improvements will allow much more complex models
(including even articulated models) to be tracked in real-time.
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