
MCILROY, ROSTEN, TAYLOR & DRUMMOND: DETERMINISTIC SAMPLE CONSENSUS 1

Deterministic Sample Consensus with
Multiple Match Hypotheses
Paul McIlroy
http://mi.eng.cam.ac.uk/~pmm33

Ed Rosten
http://mi.eng.cam.ac.uk/~er258

Simon Taylor
http://mi.eng.cam.ac.uk/~sjt59

Tom Drummond
http://mi.eng.cam.ac.uk/~twd20

Machine Intelligence Laboratory
Department of Engineering
University of Cambridge
Cambridge, UK

Abstract

RANSAC (Random Sample Consensus) is a popular and effective technique for estimat-
ing model parameters in the presence of outliers. Efficient algorithms are necessary for
both frame-rate vision tasks and offline tasks with difficult data. We present a determin-
istic scheme for selecting samples to generate hypotheses, applied to data from feature
matching. This method combines matching scores, ambiguity and past performance of
hypotheses generated by the matches to estimate the probability that a match is correct.
At every stage the best matches are chosen to generate a hypothesis. This method will
therefore only spend time on bad matches when the best ones have proven themselves to
be unsuitable. The result is a system that is able to operate very efficiently on ambiguous
data and is suitable for implementation on devices with limited computing resources.

1 Introduction
In computer vision, a common task is to estimate model parameters from a set of feature
matches. This has applications in motion estimation, tracking, SLAM, image stitching and
object detection. Feature matching schemes generate data with outliers and so models are
often estimated using some form of RANSAC (Random Sample Concensus) [3], in which
small samples of data are used to hypothesize models. Efficient RANSAC schemes are
important in both frame-rate vision and off-line vision tasks, where inefficient schemes can
prove intractable. We make the following contributions:

• A new method for determining the prior probability of a match being an inlier based
on gathered data and ambiguity in matching.

• A way to fuse the prior probability with knowledge that a point was used to success-
fully or unsuccessfully generate a hypothesis.

• A deterministic sampling scheme which always chooses the best known points to gen-
erate a hypotheses.
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The advantage of this scheme is that it always generates models from the most promising set
of points, and it is able to address the challenge of multiple matches caused by ambiguities
in matching.

Since the inception of RANSAC, a number of schemes have been proposed which aim
to improve its performance. The basic framework involves selecting points to generate a
hypothesis and then testing the correspondence of all data against the hypothesis. Speed im-
provements can be achieved by optimizing either or both of these stages. The second stage
can be improved by testing hypotheses against a random subset of points [5] or by detecting
bad hypotheses early [7]. MLESAC (Maximum Likelihood Estimation Sample Consen-
sus) [13] instead makes the measurement of correspondence more reliable and improves the
estimate of the hypotheses.

This paper belongs to the class of algorithms that optimize the first stage by improving
the way in which points are selected. Some improvement in sampling can be made if there
are good assumptions to be made about the distribution of points [6]. However, most fea-
ture matching schemes compare features for similarity, in order to decide if features match.
The implicit assumption is that better scoring matches are more likely to be correct. If the
probabilities are available (for instance by observing how often points with a given score
are inliers) then ‘Guided Sampling’ can be used which samples points according to their
probability of correctness [12]. On the other hand, if probabilities are unavailable it is still
reasonable to assume a monotonic relationship between score and probability. The PROSAC
(Progressive Sample Consensus) algorithm [2] makes use of this, spending more time con-
sidering points with a high score.

This paper sits somewhere between the PROSAC ordered-sampling approach and the
probabilistic approach of Guided Sampling. Intuitively, the first iteration of PROSAC does
the right thing: as its first act it creates a hypothesis from the best points, whereas in guided
sampling, the best points can get swamped by a large number of lower score points. How-
ever, if the first iteration fails to yield a correct solution we use a very different scheme for
choosing the next solution. The key is that when a point participates in a failed hypotheses
some information has been generated that the point is an outlier. Therefore we use this to
update the probabilities of all the points participating in such a hypothesis at the end of an
iteration. On the next iteration we again choose the most likely points.

The result is a deterministic scheme which performs sampling guided by the prob-
abilities, but always picks the best known points at each iteration.

In order to correctly deduce match probabilities, one needs a rigorous method for dealing
with ambiguities in matching. The problem with ambiguities is well known. Even with
distinctive features, better matching performance is achieved by considering the ratio of
scores between the best and second best matches [4]. This effectively scores matches on
their lack of ambiguity indirectly.

We take a more direct approach and make use of both the score and the ambiguity. Con-
sider the case where two competing matches sharing a common feature have the same good
match score. Naturally, only one can be correct so the probability of each must be ≤ 0.5, but
the sum of the two probabilities might still be ≈ 1. Without accounting for the ambiguity,
the probability of selecting either one of these two matches will therefore be the same as
selecting as single good match with probability ≈ 1. We actually consider all matches above
a low threshold, and weight the probability of matches according to both their score and the
level of ambiguity.

In order to demonstrate this technique we apply it to very simple features, with discrete
matching scores, used in frame-to-frame matching tasks. These simple features can be im-
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(a) (b)
Figure 1: Multiple matches hypothesis: (a) a discrete error score is calculate for each corre-
spondence; (b) multiple matches from a single feature on the right.

plemented efficiently on low power mobile computing devices. The lack of a database of
features prevents the use of efficient, discriminatively trained features [8, 11]. We demon-
strate that our system is capable of overcoming the considerable ambiguity in matching,
due to the simplicity of the features, to yield a very effective model estimation scheme. In
particular we demonstrate the method estimating essential matrices and homographies for a
variety of scenes.

2 Multiple match hypotheses
Multiple matches belonging to a single feature are mutually exclusive events and the prob-
abilities assigned to each alternative match must sum to ≤ 1 with the remainder being the
probability that none of the putative matches are correct. One consquence of this approach
is that if two such matches have the same quality score they must each have a probability
≤ 0.5 and are therefore significantly less likely to be valid than a unique match with the same
score. Thus, similar match scores present a challenge to strategies that select a single best
match. A common heuristic, employed in SIFT, throws away all matches associated with a
feature if the ratio between the best and next best quality scores falls below a threshold. In
this section we exploit the additional information provided by the alternative match scores
in order to compute a probability for each putative correspondence.

2.1 Heavily quantised patch descriptors
The feature descriptor used in this paper is based on the quantised patches used to build
the Histogrammed Intensity Patch of Taylor and Drummond [11]. Interest points are first
detected using the efficient FAST-9 algorithm [9]. An 8× 8 pixel patch is extracted by
subsampling from the 15×15 pixel region surrounding each interest point. The normalised
intensity of each pixel is then quantised into one of five bins. The 8×8 bits representing each
level of quantisation are stored separately as a 64-bit word with five words in total for each
descriptor. This permits an efficient implementation of the match score computation between
two descriptors using bitwise operations. The match score is an integer in the range [0,64]
representing the total number of pixels that differ between two descriptors. The descriptor
optimises for speed at the expense of performance and is not invariant to scale or rotation,
yet it successfully matches features over reasonably wide baseline frame to frame motions if
false positives can be tolerated.
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2.2 Match probability

The frame to frame matching process is illustrated by Figure 1. Each feature in the current
frame is compared to all n features in the previous frame. The putative correspondences are
assigned a discrete match score using the method described in the previous section. Each
feature in the current frame will generate at most one correct match. If one match is correct,
the remaining (n− 1) match scores are generated by incorrect correspondences. Alterna-
tively, all n match scores may be generated by incorrect correspondences if, for instance, the
correct feature is occluded or moves outside the field of view.

Each false match generates a match score drawn from a probability distribution, with
high error scores more likely than low ones. The match scores are generated by each putative
correspondence as independent trials from a catagorical distribution. Since the match scores
are discrete the probability that N false matches will generate a particular set of match scores
is therefore given by the multinomial distribution,

Mult(m1,m2, . . . ,mK |µ,N) =
N!

m1!m2! · · ·mK!

K

∏
k=1

µ
mk
k , (1)

where mk is the number of false matches that generated a match with score k following
the formulation in Bishop [1]. The parameters µ = (µ1, . . . ,µK)> give the probability of a
single false match generating match score k, and are subject to the constraints 0 ≤ µk ≤ 1
and ∑k µk = 1.

Let P(ck) be the probability that a feature has a correct correspondence with match score
k with 0 ≤ k ≤ K. There is also a probability P(c /0) that a feature has no correct correspon-
dence in the previous image.

The match scores generated by a set of n putative correspondences are observed. Several
competing explanations are compatible with the observed match scores. We first consider
the event E j that there is a correct match with score j and the other (n−1) possible matches
are false. The probability of the data given this event is then:

P(E j) = P(c j)Mult(m1,m2, . . . ,m j−1, . . . ,mK |µ,n−1). (2)

Now we consider the event P(E /0) that the feature generated the no correct match event
and the match scores m1 . . .mK were generated by the n false matches. The probability the
data given this event is then:

P(E /0) = P(c /0)Mult(m1,m2, . . . ,mK |µ,n). (3)

The posterior probability P(ci|m1, . . . ,mK) that a correct match exists with error i given
the observed set of match scores is therefore

P(ci|m1, . . . ,mK) =
P(Ei)

∑
K
j=0 P(E j)+P(E /0)

. (4)

Two or more correspondences may share the same match score, so the probability that a
single correspondence s with match score i is correct is given by

P(si|m1, . . . ,mK) =
P(ci|m1, . . . ,mK)

mi
. (5)
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(a) (b)
Figure 2: Probability distributions for error scores generated by (a) false matches; (b) correct
matches.

This probability is calculated for each putative correspondence. It provides the subse-
quent sampling strategy with a quality measure that takes into account not only the individ-
ual match score between two descriptors, but also the ambiguity in matching this feature. In
order to calculate these probabilities the parameters µ must first be determined as described
in the next section.

2.3 Match score distributions
The distribution for match scores generated by a false match is shown in Figure 2. The
probability distribution for false matches is obtained by considering the intraframe matches.
The match score between two distinct features that coexist in the same image is guaranteed
to have been generated from the false match distribution. Large numbers of false matches
over long sequences of video are very easily harvested to produce an accurate distribution.

If the patches were generated randomly from white noise the probability distribution
would follow a binomial distribution for 64 trials with probability 0.8 due to the five quan-
tisation bins. In practice the distribution is skewed towards lower match scores by scene
structure and repeated texture in real world images.

Match scores above a fixed threshold may be considered as a single event as most of the
relevant information is given by the lower match scores. This modification greatly reduces
computation required. Let K now be the upper match score threshold such that all match
scores k≥ K are assigned to event bin K. The threshold is set sufficiently low that most false
matches generate match scores above the threshold. A further simplification is then possible
noting that for nÀ 1 and µK ≈ 1,

Mult(m1, . . . ,mK−1,mK −1|µ,n−1)≈Mult(m1, . . . ,mK−1,mK |µ,n). (6)

This allows the ‘no correct match’ event and correct matches scoring ≥ K to be combined
together in event bin K.

P(EK)+P(E /0)≈ P(cK ∩ c /0)Mult(m1, . . . ,mK−1,mK −1|µ,n−1). (7)

The probability distribution for features generating correct matches is harvested from se-
quences with ground truth for the correct matches. Figure 2 shows both distributions for
match scores 0 to K−1, with the remainder of the probability occupying event bin K in each
case.
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(a) (b) (c)
Figure 3: The second minimal set sampled by: (a) RANSAC; (b) PROSAC (c) DESAC

This section described how the multiple match hypotheses generated by a feature de-
scriptor may be used to determine the probability that a putative correspondence is correct
given its match score and the match scores of the alternative hypotheses. The next section
describes how the probability of each correspondence can be used to guide the selection of a
minimal set of correspondences in a sample and test strategy to determine the camera motion
between two images.

3 DESAC: Deterministic sampling
This section introduces a hypothesize-and-verify method that exploits the prior probability
for each putative correspondence from Section 2. We seek to determine the model that best
explains the feature matches observed between two frames. The RANSAC algorithm widely
used for this purpose proceeds by selecting a minimal set of correspondences by random
sampling then testing the motion calculated from this minimal set against the remaining
matches. PROSAC uses the match score to order the correspondences and begins by select-
ing the minimal set with the best match scores. The pool of samples from which PROSAC
draws its minimal set is gradually expanded at a rate designed to provide a balance between
reliance on the initial sorting and the RANSAC approach which treats all correspondences
as equally likely.

If the probabilities for each match are available, rather than just a match score, more
sophisticated sampling is possible. If the incoming matches have similar probability to those
already in the pool, then the pool should expand more rapidly than if they have significantly
lower probability. Furthermore, if a hypothesis generated from a set of samples fails to
generate significant consensus, then it is likely that at least one of the samples used is a false
match and this can be used to update (by reducing) the probability that each match being
considered is correct. These matches can then be removed from and reinserted into the list
so that it remains sorted by match probability. At this point we can always choose the most
likely matches at the top of the list.

Figure 3 illustrates this aproach by comparing the samples chosen at the second itera-
tion of RANSAC, PROSAC and DESAC (our algorithm). The matches are shown in order
according to the prior probabilities before the first test. RANSAC ignores the probabilities
and selects each minimal set by random sampling from the set of all matches. PROSAC
expands the sample pool by one and chooses a minimal set from this limited pool compris-
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ing the recently introduced match and four of the others chosen at random. Our algorithm
reduces the probabilities of the matches tested after the first iteration and then chooses the
most likely matches from the updated probabilities. Given the nearly uniform distribution at
the top of the match list our algorithm favours fresh matches over the ones known to contain
one or more false matches. If the distribution decreased in probability more rapidly some of
matches from the first iteration may be chosen at the second iteration.

Each failed consensus test implies that the minimal set contains one or more false matches.
Consider a minimal set consisting of four matches A, B, C and D. The prior probability of
the minimal set containing only correct matches is given by P(A∩B∩C∩D). The outcome
of a failed test removes this event from the joint distribution and the posterior probability
that match A is correct becomes

P(A|Ā∪ B̄∪C̄∪ D̄) =
P(A)−P(A∩B∩C∩D)

1−P(A∩B∩C∩D)
. (8)

The joint distribution presents a challenge as it is not feasible to represent the full joint prob-
ability for large numbers of matches. We treat the events as independent and approximate the
joint distribution using P(A)P(B)P(C)P(D). Given the improved mapping between match
scores and probabilities described in 2 we proceed with this line of research and investigate
the performance of our algorithm, testing against both synthetic and real world data in the
next section.

Algorithm 1: DESAC

Store correspondences in a sorted data structure, S, sorted according to probability;1

Remove a minimal set, K, of correspondences from the top of S and fit a model;2

Test consensus of the model (inlier count above a minimum threshold or sufficient3

inlier ratio). Stop if the model has high consensus.;
Modify the probabilities of the correspondences in K according to 8, reinsert them4

into S and goto 2;

4 Results
An example of the multiple match hypotheses associated with a single feature is shown
in Figure 4. The correct match in this case has a match score of 21 and four alternative
hypotheses are generated from the false matches with higher error scores. The first match is
assigned a probability of 0.3870 taking into account the alternative hypotheses and the event
X that all matches are false.

4.1 Simulation
Our algorithm was first tested against synthetic data to investigate the best-case performance
of the method. Two sets of n points were generated to represent the features in two im-
ages. A Monte Carlo sampling approach was used to select either a correct match score or a
not matched event for each feature in turn. The probability distribution used for the correct
matches was generated from real images. If a correct match was generated for a given fea-
ture, (n−1) samples were drawn from the distribution for false matches. If the not matched



8 MCILROY, ROSTEN, TAYLOR & DRUMMOND: DETERMINISTIC SAMPLE CONSENSUS

h

Match Score Probability
1 21 0.3870
2 29 0.0866
3 29 0.0866
4 30 0.0596
5 31 0.0483
X X 0.3320

Figure 4: Match scores and probabilities for alternative hypotheses.
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(a) (b)
Figure 5: Time-to-solution for synthetic data: (a) 200 features; (b) 1000 features. Mul-
tiple Match Hypothesis (MMH) combines the scoring method proposed in Section 2 with
PROSAC. DESAC combines the scoring of Section 2 with the sampling method proposed in
Section 3.

event was drawn from the correct match probability distribution, n false match scores were
drawn from the distribution for false matches.

The multiple match hypotheses for each feature in the right image were used to assign
probabilities to each correspondence according to the method described in Section 2. This
set of synthetic data with known ground truth was then used to compare the time to solution
in iterations for a number of robust matching algorithms. Each test run terminated when a
minimal set was selected consisting only of correspondences generated by the correct match
distribution. The DESAC algorithm was compared with both PROSAC and RANSAC. Two
versions of PROSAC were implemented, one using the match score directly to order the cor-
respondences and the other making use of the probabilities with multiple match hypotheses
from Section 2 named PROSAC-MMH. Figure 5 compares the time to solution for each of
the methods measured in iterations. This is a reasonable measure of speed as the same con-
sensus test is performed on the minimal set selected at each iteration and this step dominates.

Tests were performed with n = 200 and n = 1000. The DESAC algorithm requires the
lowest number of iterations to find a correct minimal set. The PROSAC version ordered by
probabilities clearly outperforms the version ordered by match scores, but this is unsurpris-
ing as the synthetic data is drawn from the distributions used to calculate the probabilities.
RANSAC requires many more iterations for n = 1000 as each feature now has five times as
many false matches which are equally likely to be sampled as the correct ones. The order-
ing in PROSAC and DESAC makes these algorithms more robust to increased noise as the
correct matches have higher probability of being selected.



MCILROY, ROSTEN, TAYLOR & DRUMMOND: DETERMINISTIC SAMPLE CONSENSUS 9

 0

 20

 40

 60

 80

 100

 1  10  100  1000

%
 o

f r
un

s 
co

m
pl

et
ed

Number of iterations

RANSAC
PROSAC

MMH
DESAC

 0

 20

 40

 60

 80

 100

 1  10  100  1000

%
 o

f r
un

s 
co

m
pl

et
ed

Number of iterations

RANSAC
PROSAC

MMH
DESAC

(a) (b)

 0

 20

 40

 60

 80

 100

 1  10  100  1000

%
 o

f r
un

s 
co

m
pl

et
ed

Number of iterations

RANSAC
PROSAC

MMH
DESAC

 0

 20

 40

 60

 80

 100

 1  10  100  1000

%
 o

f r
un

s 
co

m
pl

et
ed

Number of iterations

RANSAC
PROSAC

MMH
DESAC

(c) (d)
Figure 6: Time-to-solution comparison: (a) indoor; (b) brick wall; (c) hedge; (d) bike shed.

4.2 Experiments on video sequences

Figure 6 presents the results of experiments on four video sequences. The lab sequence rep-
resents a standard indoor 3D scene with distinct corner features and some repeated texture.
The brick wall is a more challenging planar scene with fewer distinct features. The hedge
sequence represents a difficult natural scene. The bike sequence frustrates matching by gen-
erating corner features between overlapping structures that only exist temporarily in a single
frame.

An adaptive FAST threshold was used to extract 100 features from the first image draw-
ing 25 from each quadrant. The brick wall scene has few distinct corner features and many
similar interest points generated by the brick texture. The adaptive threshold selects twice
as many interest points in the second frame to address the redetection challenge caused by
the top 100 interest points varying from frame to frame. For the 3D sequences the epipolar
geometry was recovered from the minimal set of five matches using [10]. In the 2D brick
wall scene the planar homgraphy was calculated from a minimal set of four matches.

The time-to-solution tests on real video sequences reveal the same overall trend as the
synthetic experiments. The version of PROSAC ordered using the improved match probabil-
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ities again shows a marked improvement on standard PROSAC using the individual match
scores. Our algorithm requires the fewest iterations overall.

5 Conclusion
We introduced a deterministic sampling scheme that combines evidence from matching
scores, ambiguity and past performance of matches in generating hypotheses. At every stage
the best set of matches is chosen to generate a new hypothesis. The performance of this
method was examined using both synthetic tests and real world video sequences. The results
show that we require fewer iterations than existing sample consensus schemes.
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