
3F6 - Software Engineering and Design

Handout 3

Classes and C++ (II)
With Markup

Ed Rosten

Contents

1. A Drawing Editor Example

2. Polymorphism

3. Virtual Functions

4. Exception Handling

5. Templates

6. The Standard Template Library

Copies of these notes plus additional materials relating to this course can be found at:
http://mi.eng.cam.ac.uk/~er258/teaching.html.

Classes and C++ (II) 1

A Drawing Editor Example

Imagine a very simple drawing editor where drawings consist only

of rectangles represented by class Rectangle.

Rectangle * my_rectangles[N];

Ellipse * my_ellipses[N];

// display the drawing

for(int i=0; i<num_rectangles; i++){

my_rectangles[i]->draw();

}

for(int i=0; i<num_ellipses; i++){

my_ellipses[i]->draw();

}

If we now want to extend our drawing editor to allow ellipses as

well, we could create class Ellipse and add a list of ellipses

to the list of rectangles.

Because Ellipse has the same interface as Rectangle, we can

easily extend the program by cutting and pasting.

But this quickly becomes unmanageable. (eg think of all the

shapes in Powerpoint).

2 Engineering Part IIA: 3F6 - Software Engineering and Design

class Rectangle {

public:

void draw();

void move(int dx, int dy);

void fill(int colour);

private:

int left;

int right;

int top;

int bottom;

};

class Ellipse {

public:

void draw();

void move(int dx, int dy);

void fill(int colour);

private:

int x_centre;

int y_centre;

int width;

int height;

};

Classes and C++ (II) 3

Polymorphism

When we created class Ellipse to look like class Rectangle,

we were using a weak kind of is-a relationship. Both Rectangle

and Ellipse provide the same interface for drawing, moving and

filling shapes.

We can formalise this by using class derivation as in the VideoFrame

example. However, here we go further.

First, we define an abstract data type to represent the abstract

concept Shape.

class Shape {

public:

virtual void draw()=0;

virtual void move(int dx, int dy)=0;

virtual void fill(int colour)=0;

};

This is called the base class and its functions are pure virtual

functions. They have no implementation bodies, instead they

are placeholders for the concrete functions that will be defined in

each class derived from Shape.

We then derive Rectangle, Ellipse and any other shape that

we want from this base class. Note ”virtual” means that the

function can be redefined in a derived class. ”=0” means that no

implementation body will be provided.

4 Engineering Part IIA: 3F6 - Software Engineering and Design

class Rectangle : public Shape {

public:

virtual void draw();

virtual void move(int dx, int dy);

virtual void fill(int colour);

private:

// as before

};

class Ellipse : public Shape {

public:

virtual void draw();

virtual void move(int dx, int dy);

virtual void fill(int colour);

private:

// as before

};

These are called subclasses, derived types or derived classes.

We can now declare pointers of type Shape and use them to

point to these derived classes.

Shape *p;

Rectangle *r = new Rectangle();

Ellipse *e = new Ellipse();

// assign either r or e to p

p->draw(); // draw whatever p points to

This is called polymorphism.

Classes and C++ (II) 5

Using Virtual Functions

We can now simplify the code for drawing the rectangles and

ellipses into a single loop:

Shape* my_shapes[MAX_NUM_SHAPES];

int num_shapes = 0;

void AddShape(Shape *s) {

my_shapes[num_shapes++] = s;

}

void DrawShapes() {

for(int i=0; i<num_shapes; i++){

my_shapes[i]->draw();

}

}

A further advantage of this approach is that this code doesn’t

change when we introduce further shapes into our drawing editor

with their own virtual functions. The line of code

my_shapes[i]->draw();

will automatically detect new subclasses of Shape and call the

draw function that has been supplied by the programmer of the

subclass.

6 Engineering Part IIA: 3F6 - Software Engineering and Design

How Virtual Functions are Implemented

10000100
10000300

10000600
10000900

01008800
01008804
01008808
0100880C
01008810
01008814

Rectangle::Draw()

Rectangle::Move()

Ellipse::Draw()

Ellipse::Move()

10000100

10000300

10000600

10000900

001FF000
001FF004
001FF008
001FF00C
001FF010
001FF014
001FF018

01008800
100
200
100
200

_vtbl
left
right
top
bottom

001FF01C
001FF020
001FF024

150
150
20
20

_vtbl

width
height

0100880C

a_rectangle

an_ellipse
x_centre

y_centre

Note that we use a double indirection to avoid duplicating a large

set of pointers for every instance of the object.

Classes and C++ (II) 7

Reporting Errors

Errors in the operation of a program are inevitable and robust

software must be able to detect and handle them appropriately.

Consider the following:

int main() {

...

int traderr = MyTrader();

if(traderr != OKAY) {

// Sort out the error

}

...

}

//--

int MyTrader() {

...

float price;

int ret = TE_GetPrice(day, price);

if(ret != OKAY) return ret; // Pass the error back

...

return OKAY; // Signal success

}

//--

int TE_GetPrice(int day, float& price) {

...

if (!Valid(day)) return BAD_DAY;

...

return OKAY;

}

Here return codes are used to signal errors.

8 Engineering Part IIA: 3F6 - Software Engineering and Design

Exceptions

Errors such as the above represent exceptions to the normal

program flow.

Handling exceptions via return codes has a number of disadvan-

tages:

• Extra code needs to be inserted in each function to pass the

errors back.

• If one function fails to check for errors and pass them back,

the errors will not get handled.

• The extra error checking obscures the main function of the

code, making it difficult to understand.

• Error recovery code becomes intertwined with the normal

operation code.

• Functions cannot use return values for normal purposes.

Fortunately, there is a better way.

Classes and C++ (II) 9

Exception handling

In a structured approach to exception handling, exceptions are

represented by class objects. The fields of the class can be used

to record all relevant error information.

For example,

class TradingErr {

TradingErr(ErrType ee, Time tt) {e=ee; t=tt;}

ErrType e;

Time t;

};

Exception handling now consists of two stages:

a) Raising the Error

throw TradingErr(BAD_DAY,TimeNow());

The effect of a throw is to exit the current procedure. If the

calling procedure has a handler, it is invoked. Otherwise, the

process repeats.

Note that the class object is constructed before it is thrown.

10 Engineering Part IIA: 3F6 - Software Engineering and Design

b) Handling the Error

At an appropriate point in the procedure call hiearchy, a catch

statement is inserted to catch and handle a specific exception.

void SomeFunction () {

try {

// regular code

}

// exception handler

catch (TradingErr x) {

if (x.e == ...)

}

Note

• using exception handlers, the code is much cleaner because

the error handling parts are clearly separated from the regu-

lar code.

• a handler can throw the exception again allowing some errors

to be trapped and repaired and others to be propagated.

Classes and C++ (II) 11

The Trading example again:

int main() {

try {

...

MyTrader();

...

}

catch (TradingError x) {

ReportError(x.e, x.t);

}

}

//--

void MyTrader() {

....

float price = TE_GetPrice(day);

....

}

//--

float TE_GetPrice(int day) {

...

if (!Valid(day))

throw TradingErr(BAD_DAY,TimeNow());

...

}

12 Engineering Part IIA: 3F6 - Software Engineering and Design

Templates

The Image class we defined earlier can only store greyscale im-

ages because

• The pixels data member is of type char *.

• The get pixel() function returns a char.

• The set pixel() function takes a char as its third argu-

ment.

If we want to handle colour images (where every pixel is of type

Colour) or images where every pixel is an int, we have to either

(a) create new classes for each specific pixel type or

(b) define a polymorphic class for pixels.

but (a) is tedious and (b) is very inefficient.

What is needed is a specific mechanism to parameterise types.

In C++ this is achieved using Templates

• Templates allows a type to vary without virtual functions

• Templates provide compile-time polymorphism

• You can also template with numeric constants e.g. fixed sized

matrices.

• Templates are Turing complete!

Classes and C++ (II) 13

template <class T> // T is a generic type

class Image {

public:

Image(int w, int h);

~Image();

int get_width();

int get_height();

T get_pixel(int x, int y);

void set_pixel(int x, int y, T val);

void load(char *filename);

void save(char *filename);

private:

int width;

int height;

T *pixels; // array of T’s

};

We can use template classes in the following way:

// create a greyscale image where T = char

Image<char> grey_im(200,200);}

// create a colour image where T = Colour

Image<Colour> colour_im(200,200);}

...

grey_im.set_pixel(100,100,255);

Colour col = colour_im.get_pixel(100,100);

...

etc

14 Engineering Part IIA: 3F6 - Software Engineering and Design

The C++ Standard Template Library

The most common use for template programming is to create

container classes. The standard template library (STL) contains

many of these. For example

template<class T>

class vector {...};

allows the user to create arrays that work in a similar way to C

style arrays but with many extra features such as dynamic sizing,

array bound checking, etc.

vector<int> primes(100);

primes[0]=2;

primes[1]=3;

This code creates an array of 100 integers and stores the integer

values 2 and 3 into the first two slots.

vector supports other functions as well, for example:

primes.push_back(547);

increases the size of the array by one and sets the last entry to

547.

Classes and C++ (II) 15

Lists and Iterators

An alternative to the vector container is the list:

template<class T>

class list {...};

which allows the user to create linked lists:

list<int> lprimes;

lprimes.push_back(2);

lprimes.push_back(3);

This creates an initially empty linked list of integers and then

pushes the integers 2 and 3 onto the list.

It is possible to iterate through the elements of a linked list by

declaring an iterator type.

An iterator is a generalised form of index:

list<int>::iterator it;

for(it=lprimes.begin(); it!=lprimes.end(); it++){

cout << (*it) << endl;

}

16 Engineering Part IIA: 3F6 - Software Engineering and Design

Note that similar code could be used to scan the elements of a

vector

// scan vector using iterators

vector<int>::iterator it;

for(it = primes.begin(); it!=primes.end(); it++){

cout << (*it) << endl;

However, in the case of vectors only, conventional indexing is

supported

// scan vector using an integer index

int i;

for(i=0; i < primes.size(); i++){

cout << primes[i] << endl;

}

where primes.size() returns the number of elements in the

container (vector in this case).

One day, the syntax will get better. The new C++ standard is

due to be finalised in March.

Classes and C++ (II) 17

The STL Containers

The STL provides a variety of container types which allow com-

plex program structures to be built with very little effort.

1. lists - linked list

2. vectors - array

3. strings - character array

4. sets - set of values

5. map - associative map, values are accessed using a key

6. mmap - a map which supports duplicate keys

plus a large set of built-in algorithms for manipulating these con-

tainers such as find, insert, replace, sort, reverse, , etc.

A further advantage of using STL and similar libraries is that

they are robust and they have built-in memory management

which helps to avoid memory leaks.

18 Engineering Part IIA: 3F6 - Software Engineering and Design

OO Programming

The object-oriented programming mechanisms described in the

previous two lectures change the way we go about designing soft-

ware. The process is something like:

1. What kinds of objects are present in the problem domain?

- list of potential classes

2. Are there any classes with similar functionality and common

purpose?

- introduce abstract base classes

- find the is-a relationships

- define class hierarchies

3. What are the relationships between classes?

- find the has-a relationships.

- define class compositions

4. What services (functions) must each class provide?

- define interfaces

5. How are these services going to be implemented?

-implement interfaces

6. Iterate and refine 1–5.

