
3F6 - Software Engineering and Design

Handout 12

Concurrent Systems I
With Markup

Edward Rosten

Contents

1. Concurrency

2. Processes

3. Context Switching and Scheduling

4. Threads

5. Multi-threaded Programming

Copies of these notes plus additional materials relating to this course can be found at:
http://mi.eng.cam.ac.uk/~er258/teaching.html.

Concurrent Systems I 1

Concurrent Systems

A concurrent system consists of several elements which operate

at the same time and communicate with each other.

Class of system Examples

Web-based system • Google

...

• Department webserver

Transaction system • HSBC internet banking system

• BA flight reservation system

• EBay

Distributed system • Folding@Home (5× 1015 FLOPS)

• ‘Jaguar’ supercomputer (1.6× 1015 FLOPS)

Operating System • Linux or Windows

• Mobile phone

Real time system • Process control system

• Engine management system

Embedded system • Dishwasher

• DVD Player

Applications • Web browser

• Microsoft Office

2 Engineering Part IIA: 3F6 - Software Engineering and Design

Levels of Concurrency

Concurrency may be viewed at the logical level and the physical

level. There is a rough correspondence between the two but it is

not exact.

Physical Logical

ThreadsThreads

ProcessesProcesses

CPUsCPUs

Computers

Networks Distributed Systems/
Database Systems

Operating
Systems

Real-time
Systems

Programs

Communication is via

• shared memory

• local databusses

• external network connections

Concurrent Systems I 3

Why is Concurrency an issue?

Concurrency is essential for:

• high performance computing by using more than one CPU to

process data. The current fastest supercomputer has 224,256

cores.

• interaction with the real world since important events happen

concurrently.

Concurrent systems must communicate with each other, and

share resources. However, uncontrolled concurrent access to writable

resources leads to errors:

• simultaneous access to the same memory location leads to

errors (race conditions):

int i;

// thread 1 // thread 2;
++i ++i

//In assembler

LDAA i LDAA i

INCA INCA

STAA i STAA i

• Spirit rover suffered from a race condition

http://www.aiaa.org/spaceops2006/presentations/

56207.ppt

http://www.aiaa.org/spaceops2006/presentations/56207.ppt
http://www.aiaa.org/spaceops2006/presentations/56207.ppt

4 Engineering Part IIA: 3F6 - Software Engineering and Design

• simultaneous access to the same resources leads to unpre-

dictable results. These concurrency problems were also high-

lighted in the lecture on Transaction Processing.

#include <iostream>

int main()

using namespace std;

{
#pragma omp parallel for

for(int i=0; i < 10; i++)

cout << "Hello " << i << endl;

}
compile with: g++ -o prog prog.cc -fopenmp

• Resources can be locked:

// thread 1 // thread 2;
lock("printer"); lock("scanner");
lock("scanner"); lock("printer");

• uncontrolled locking can deadlock

Concurrent Systems I 5

• uncontrolled locking can cause much more subtle problems

such as priority inversion.

Shared resource: R

Task 1:(Low priority)

Lock R

Do processing

Release R

Task 2: (High priority)

Lock R (wait for 1 to finish)

Do processing

Release R

Task 3: (Medium priority)

Executes in preference to low priority tasks (1).

Task 2 has to wait for task 3

• This happened on the Mars Pathfinder mission. The mete-

orological data gathering task locked a shared memory area

used for all communication. This was suspended by a long

running medium priority communications task. This pre-

vented much higher priority tasks from running because they

needed access to the memory area.
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/mars_pathfinder.
html

http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Authoritative_
Account.html

• Using locks covered in lecture 13 and 14.

http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/mars_pathfinder.html
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/mars_pathfinder.html
http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html
http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html

6 Engineering Part IIA: 3F6 - Software Engineering and Design

Implementation of Concurrency

1. At the cpu level and above, concurrency arises naturally since

there are multiple physical processors. This is real concur-

rency.

2. Below the cpu level, a single cpu is shared amongst many

software processes. This is simulated concurrency.

Why do we simulate concurrency if it creates problems?

Because overall it greatly simplifies many real world applications

• real time systems which have to respond to external asyn-

chronous events

• desktop window-based applications which have to do several

tasks at once

• server applications have to respond to several simultaneous

requests

This lectures will focus on mainly on simulated concurrency and

how it is implemented on a single processor. The next lecture

will focus on the programming constructs and methods that allow

concurrency to be used safely and effectively.

Note that the programmer should always assume that the con-

currency is real! eg Core Duo

Concurrent Systems I 7

Processes and Execution Context

When a program is executing, the program state is determined

by memory, the cpu state and the contents of its registers.

• Program Stack Part of the memory is allocated for proce-

dure variables, parameters and return values. This memory

is called the Program Stack since it grows and shrinks as

procedures call and return.

• Stack Pointer (SP). The SP is stored in the CPU and

it points to the current top of the program stack. When

a procedure is called, the SP is decremented by an amount

equal to the total local memory requirement of that proce-

dure. When the procedure exits, the SP is incremented by

the same amount.

• Program Memory The program instructions are stored

in the Program Memory which is often Read-only memory

(ROM).

• Program Counter (PC) The PC points to the next in-

struction to execute in program memory. When each instruc-

tion completes, the PC is normally incremented automati-

cally by the size of that instruction. Exceptions are jumps

and procedure calls, in which case the PC is loaded with the

address of the instruction to jump to or call.

8 Engineering Part IIA: 3F6 - Software Engineering and Design

SP
PC

Idx
Status

Acc

SP
PC

Idx
Status

Acc

Program
Stack
Program
Stack

Program
memory
Program
memory

Execution
Context
Execution
Context load idx

add
store idx
jmpz+4
sub 1

0a4f
10ea
0994
0001
0fff

CPU
Memory

Concurrent Systems I 9

Interrupts

When the voltage on a particular pin changes, the CPU stops

whatever it is doing and jumps to a fixed location in memory.

Alter the PC

The memory location jumped to contains the interrupt service

routine. This code will inevitably alter the state of the CPU.

When the interrupt has been serviced the program should con-

tinue whatever it was doing when the interrupt happened.

First save the old PC, Acc, Idx, Status, etc ...

The interrupt then needs to be serviced. Interrupts are generated

by external hardware such as:

• Keyboard, mouse, network card, timer, data capture

so the CPU needs to respond to the particular device causing an

interrupt.

When the interrupt has been serviced, the processor state then

has to be restored.

Restore Acc, Idx, Status, ...

Then last act of the interrupt service routine is to jump back in

to the middle of whatever was happening before.

Restore the PC

10 Engineering Part IIA: 3F6 - Software Engineering and Design

Context Switching

SP
PC

Idx
Status

Acc

SP
PC

Idx
Status

Acc

SP
PC

Idx
Status

Acc

SP
PC

Idx
Status

Acc

SP
PC

Idx
Status

Acc

SP
PC

Idx
Status

Acc Stack
memory
for
A and B

Program
memory
for
A and B

Memory

CPU

SP
PC

Idx
Status

Acc

SP
PC

Idx
Status

Acc

Process Records

Context Switch: (a) save current cpu reg; (b) load new cpu reg

Concurrent Systems I 11

Process States

Each process is represented by a Process Record.

A process can be in one of three possible states:

Running Blocked

Ready

Wait for event e

Scheduled

Preempted

Event e
Occurs

The Operating System (OS) maintains a number of process record

queues

• ready queue (every process except running process is

• one queue for each possible event in one of these queues)

The OS schedules processes by moving them

1. from the ready queue to the physical cpu;

2. from the physical cpu to the ready queue;

3. from the physical cpu to an event queue.

12 Engineering Part IIA: 3F6 - Software Engineering and Design

Process Scheduling Example

.....

InitialiseComputation();

ComputeStage1();

DisplayStatus();

pause(10);

ClearStatus();

ComputeStage2();

RequestPrinter();

PrintResults();

...

A process

Running

Ready Q

Tim
er Q

Prin
ter Q

This example illustrates pre-emptive scheduling. Embedded real

time systems often use cooperative non-preemptive scheduling

Yield used instead of preemption

Concurrent Systems I 13

Process Scheduling Policy

Process scheduling policy is determined by the Operating Sys-

tem.

The scheduling strategy tries to fulfil the following criteria:

• fairness: every process gets a reasonable slice of cpu time

• efficiency: keep processor busy as much as possible

• response time: avoid holding a process in ready queue for too

long

• control: allow programmer reasonable control

Programmer control is usually provided by allowing processes to

be assigned priorities.

Note that priorities should never be used to solve “race condi-

tions”.

14 Engineering Part IIA: 3F6 - Software Engineering and Design

Processes and Threads

Process may be computationally expensive since

• Every process has its own private memory space and when a

process is switched there is a time cost.

• Communication between processes must use the OS and/or

Middleware (E.g. shared files, sockets, remote procedure calls).

This can be cpu intensive if there is a lot of data to share.

Multiprogramming at the process-level is usually done using OS

primitives such as sockets, messages or shared memory (and

locks) or high level middle-ware systems systems such as CORBA,

or Microsoft .Net.

A process can be divided into threads:

• Threads share the same memory space (each one has its own

stack)

• Context switching is cheap since only the PC and registers

are switched

• Communication is efficient via shared memory

Threads can be thought of as lightweight processes and often

multi-programming on modern OS’s involves using threads.

Concurrent Systems I 15

Multi-threaded Programming

Every operating system has its own set of primitives for multi-

threaded programming. The names and details will vary but all

provide similar core primitives.

Threads are defined like functions, but instead of calling them

a thread is spawned using create and then later merged using

join.

// define a thread as a function

void ChildThread(int i) {

// define thread operations

}

// ------- main thread --------

Thread t = create(ChildThread,0,normal);

// ChildThread is now executing in parallel

// with main thread at normal priority.

...

...

// wait for ChildThread t to terminate

join(t);

// now there is just one thread again

....

Other commonly provided thread management functions include:

kill(t); // kill thread t

pause(n); // pause calling thread for n msecs

exit(); // calling thread terminates

self(); // a reference to the caller

Stores exe-
cution con-
text →

Deletes
execution
context →

16 Engineering Part IIA: 3F6 - Software Engineering and Design

Example - Watchdog timer

const int N = 10;

Thread wd, t[N];

bool ok[N];

// Watchdog thread - checks workers are alive

void Watchdog(int i) {

while(1){

pause(1000);

for (int i=0; i<N; i++) {

if (!ok[i])

kill(t[i]), RaiseAlarm(i);

ok[i]=false;

}

}
}

// Worker threads - do the hard work

void Worker(int i) {

DoCompute1(); ok[i] = true;

DoCompute2(); ok[i] = true;

...

}

// main program

void main() {

for (int i=0; i<N; i++) {

t[i] = create(Worker,i,normal);

ok[i] = false;

}

wd = create(Watchdog,0,high);

// wait here for all workers to stop

for (int i=0; i<N; i++) join(t[i]);

kill(wd);

}

