
3F6 - Software Engineering and Design

Handout 11

Distributed Systems II
With Markup

Ed Rosten

Contents

1. Mapping IDL to C++

2. Client operation

3. IORs and the Naming Service

4. Writing a Server

5. Factories and Load Balancing

Copies of these notes plus additional materials relating to this course can be found at:
http://mi.eng.cam.ac.uk/~er258/teaching.

Distributed Systems II 1

CORBA Programming in C++

Review of basic client-server operation in CORBA

Client Application Server Application

Proxy
Stub

ORB
Interface

Client ORB

Object
Adapter

Server ORB

ORB
Interface

Network

1. The client locates the server and creates a smart-pointer to

the server object.

2. The client calls a server method via the smart-pointer.

3. The method stub in the proxy class conveys the request to

the client’s ORB.

4. The client’s ORB transmits the request to the ORB linked

to the server.

5. The server’s ORB dispatches the request to the object adapter

that created the target server object.

6. The object adapter dispatches the request to the server ob-

ject.

7. The object returns results via the same route.

8. Steps 2 to 6 can be repeated. When the smart-pointer is

destroyed, the server releases the target object.

Object I/F Built-in services Marshalling

2 Engineering Part IIA: 3F6 - Software Engineering and Design

Mapping the IDL into C++

The first step is to compile the IDL interface specification into

the required target language. This creates a set of files which

form the starting point for the implementation.

For example, suppose that the Recogniser interface is stored in

the file reco.idl

NB: the details of IDL compiler operation will vary for different CORBA

implementations. The description here is for omniORB.

Server code
often sup-
plied by a 3rd
party

Distributed Systems II 3

Client Operation

To access a remote CORBA object of type Recogniser, a client

must take the following steps

1. Create an ORB

CORBA::ORB_var orb = CORBA::ORB_init(0,0,"omniORB4");

2. Locate the remote object and create a generic pointer to it.

string IORstr = "..."; // text version of an IOR

CORBA::Object_var obj = orb->string_to_object(IORstr);

3. Check that the object we have located matches the IDL in-

terface specification (dynamic type-casting).

Recogniser_var rec = Recogniser::_narrow(obj);

if (rec == NULL) error();

4. the remote Recogniser object is now ready for use

rec->init(English); rec->SetBeam(250.0);

Two questions remain:

• How do we access IDL types from C++ ?

• What is an IOR and how do we obtain them?

4 Engineering Part IIA: 3F6 - Software Engineering and Design

IDL to C++ Mapping - Simple Types

For simple types, there is a simple one-one mapping. For exam-

ple,

IDL C++

short CORBA::Short

long CORBA::Long

unsigned short CORBA::UShort

float CORBA::Float

boolean CORBA::Boolean

etc

CORBA types and C++ types are assignment compatible and
share the same operators. For example,

CORBA::Float beam = 200; // CORBA type

float inc = 50; // C++ type

...

beam += inc; // implicit type conversion

rec->SetBeam(beam);

However, for portability reasons, it is best to avoid mixing them

if possible.

Distributed Systems II 5

IDL to C++ Mapping - Structured Types

Fixed size structures are similarly straightforward. eg the IDL

definition

typedef short Audio[AudioMax];

becomes

typedef CORBA::Short Audio[AudioMax];

in C++ which can then be manipulated and accessed as for any

other C++ array.

Variable length types are a little more complex.

typedef sequence<string> Words;

creates a class called Words with a number of operations to cre-
ate, extend, shrink and destroy sequences. The following example
illustrates some of the main operations:

Words w; // create empty sequence

w.length(2); // w is now a sequence of 2 empty strings

w[0] = CORBA::string_dup("hello"); // assign values

w[1] = CORBA::string_dup("world");

int len = w.length(); // len = 2

w.length(1); // length now 1, string "world" deleted

6 Engineering Part IIA: 3F6 - Software Engineering and Design

Interoperable Object Reference(IOR)

An IOR is the CORBA equivalent of a URL. It contains

• a RepositoryID - this is the name of the object used by the

ORB. For example, IDL:Epic/Recogniser/V1.0

• host IP number of the object’s server

• port number on which the server listens for requests

The ORB provides functions to convert an IOR to a string form
which can be written out and passed to clients who can then
convert it back to an IOR. Eg. In the server,

Recogniser_impl rec_servant; // create a Recogniser object

// then create a reference to it

Recogniser_var rec = rec_servant._this();

// convert this reference to a string

string str = orb->object_to_string(rec);

// and write it out

cout << str << endl;

On the client, if this stringified IOR is stored in ”ior.txt”, it can
be reloaded

ifstream ifs("ior.txt");

string ior; ifs >> ior;

CORBA::Object_var obj = orb->string_to_object(ior);

However, this is all rather clumsy. So CORBA also provides a

Naming Service.

Distributed Systems II 7

The Naming Service

Using text files to transmit object references can be cumbersome

(and, at times, very difficult). An alternative approach is to use

the Naming Service built into CORBA:

• server registers its object(s) with the Naming Service giving

each a name

• clients request the Naming Service for object references by

sending the registered name

• Naming Service returns a reference to the object

The Naming Service provides a hierarchical naming system so

that objects appear as if they are stored in a hierarchical filing

system. This simplifies the organisation of very large systems,

and it helps to avoid name clashes.

The Trading Service

CORBA also provides a Trading Service which is a search engine

for CORBA objects. It stores object references according to their

attributes and services.

8 Engineering Part IIA: 3F6 - Software Engineering and Design

Writing the Server Code

The basic process is as follows:

1. Implement the Recogniser Object

2. Create an ORB

3. Register the Recogniser Object with the ORB

4. Start the ORB

Once started, the ORB waits for requests to the Recogniser’s

methods.

For each request, the ORB

1. unpacks the parameters

2. calls the specified object method

3. packs any results and returns them to the caller

Note that the packing/unpacking of remote method call param-

eters is called marshalling

Distributed Systems II 9

Implementation of Recogniser Object

All of the CORBA related code is generated automatically by

the IDL compiler (stored in recoSK.cc). The interface be-

tween CORBA and the actual object is via the Portable Object

Adapter which is represented in reco.hh by a virtual POA_Recogniser

class. The code that has to be written is simply a concrete class

which implements the actual object:

#include "reco.hh"

class Recogniser_impl : public virtual POA_Recogniser {

public:

virtual void init(Lang l);

virtual void setBeam(CORBA::Float beam);

virtual Words* listen(const Audio a);

};

void Recogniser_impl::init(Lang l)

{

// actual implementation of init method

}

void Recogniser_impl::setBeam(CORBA::Float beam)

{

// actual implementation of setBeam method

}

Words* Recogniser_impl::listen(const Audio a)

{

// actual implementation of listen method

}

10 Engineering Part IIA: 3F6 - Software Engineering and Design

Factories in CORBA

As described so far, if the server received multiple requests for

a Recogniser object, it would return the same actual object to

each of them.

To avoid this, a CORBA server typically follows the Factory

design pattern. Here is the revised interface definition for our

Epic Recogniser using the Factory pattern.

module EpicV1 {

const long AudioMax = 100000; // max size of audio chunk

enum Lang {English, French, German, Chinese};

typedef short Audio[AudioMax];

typedef sequence<string> Words;

interface RecServant {

void setBeam(in float beam);

// adjust the beam width to control the search

Words listen(in Audio a);

// invoke the recogniser to convert the segment of

// audio in a into a sequence of words

};

interface RecogniserFactory {

RecServant get_Recogniser(in Lang l);

};

};

Distributed Systems II 11

Load Balancing

Now that the Recogniser server can provide multiple Recogniser

instances, issues of compute load must be considered. As shown

earlier, each instance of RecServant will consume approx 15% of

a cpu. Hence, for large scaleable systems, the Recogniser Factory

must have access to a stack of computers, and allocate instances

on different machines depending on load.

Graphically this is illustrated as follows:

factory->get_Recogniser(lang)

1. Load=25%

2. Load=87%

3. Load=40%

4. Load=5%

5. Load=70%

reference to
RecServant object

on machine (4)

Note that once the factory server has returned the reference to

the actual RecogniserServant, all future communication with

the client goes directly to the machine hosting the instantiated

object.

12 Engineering Part IIA: 3F6 - Software Engineering and Design

Implementation of Load Balancing

This is a simple extension of the Factory design pattern.

• each stack computer runs a server which maintains a Man-

ager object which acts like a mini-factory creating object

instances on its own machine. It also has a facility for moni-

toring the cpu load.

• the primary Factory access is now via a Factory object which

scans each manager to find the one which is least heavily

loaded. It then asks the least-loaded manager to instantiate

an object and return a reference to it. This reference is then

returned to the client.

Client RecServant

Manager

+create_servant(): RecServant
+get_load():float

managers

*

1
*

1
<<instantiate>>

Factory

+get_Recogniser ():RecServant

float lowest = max_load;
Manager *best;

for each m in managers {
 float l =m->get_load();
 if (l < lowest) {
 lowest = l; best = m;
 }
}
return
best->create_servant();

Note that the load balancing is invisible to the client. Hence,

this type of solution can be scaled over time to meet increasing

demand with no changes to the client.

Distributed Systems II 13

Client-Server Relationships

The client-server relationship is not necessarily static. In any

system, the roles of client and server may change.

Example a server wishes to notify all of its clients that the data

has changed. This can be done by giving each ‘client’ their own

interface (thus making them a server!):

Server
-my_state: int
+add_client(c:Client)
+set_state(s:int)

Client

+notify()

 clients
 *

server
1

my_state=s;
for each c in clients {
 c->notify();
}

In this example, each client registers itself with the server by

calling add_client, passing their smart pointer. The server

keeps a list of these and when the state changes, it can call the

notify method on each client. The IDL for this is simple:

interface Client {

void notify();

}

interface Server {

void add_client(in Client c);

void set_state(in long s);

}

(This is an example of the observer design pattern.)

14 Engineering Part IIA: 3F6 - Software Engineering and Design

Footnote: Smart Pointers

Smart pointers such as Recogniser_var are crucial to the clean

implementation of the proxy design pattern. The key idea is to

wrap a class in some other class in order to redefine the behaviour

of certain operations.

The most common example of this is to ensure that allocated
objects are deleted automatically. For example, suppose that
Object is a regular class. Standard use would be

void foo() {

Object *p = new Object();

p->DoSomething();

delete p; // but this is easy to forget!

}

Using a smart pointer you would do something like

void foo() {

SmartPtr p(new Object());

p->DoSomething();

}

Here is a simple implementation of SmartPtr

class SmartPtr {

Object * ptr; // the actual object

public:

SmartPtr(Object *p=0):ptr(p){}

~SmartPtr(){delete ptr}

Object & operator*() {return *ptr;}

Object * operator->() {return ptr;}

};

Distributed Systems II 15

Summary

• Distributed systems spread the processing over several com-

puters, which has advantages in processing power, geograph-

ical access, and usability.

• Distributed systems are complex and use middleware to han-

dle the problems of communication between computers.

• CORBA is an object-oriented middleware specification. It

uses proxy objects, and an interface definition language

(IDL) to provide location transparency and language trans-

parency. Interfaces define the functions that can be called

on objects.

• It is usual to talk about clients and servers. However, clients

can also have their own interfaces, which means they act as

servers themselves.

• Factories can be used to create objects and provide load-

balancing, and derived interfaces allow interfaces to be mod-

ified without breaking existing clients.

