Optimized corner detection and object detection

Edward Rosten

Damian Eads, David Helmbold, Reid Porter, Tom Drummond

Optimizing the right thing

Two examples:

- 1. Corner detection
- 2. Object detection

What are they and how do you optimize them?

What is corner detection?

Useful for:

• 2D tracking, 3D tracking, SLAM, object recognition, etc.

- Visually 'salient' features.
- Localized in 2D.
- Sparse.
- High 'information' content.
- Repeatable between images.

Edward Rosten, Reid Porter, Tom Drummond

The segment-test detector

The segment-test detector

The segment-test detector

Contiguous arc of N or more pixels:

- All much brighter than p (brighter than p+t). or
 - All much darker than p (darker than p-t).

- Pixels are either:
 - Much brighter.

- Pixels are either:
 - Much brighter.
 - o Much darker.

- Pixels are either:
 - Much brighter.
 - o Much darker.
 - o Similar.

- Pixels are either:
 - Much brighter.
 - Much darker.
 - o Similar.

- Represent ring as a ternary vector.
- Classify vectors using segment test.

Train a classifier

- Decision tree classifiers are very efficient.
- Ask: "What is the state of pixel x?"
- Question splits list in to 3 sublists.
- Query each sublist.
- Recurse until list contains all features or all non features.
- Choose questions to minimize entropy (ID3).
- Use questions on new feature.
- Works for any N.

Output C++ code

A long string of nested if-else statements:

... which continues for 2 more pages.

How FAST? (very)

Detector	Set 1		Set 2	
	Pixel rate (MPix/s)	%	MPix/s	%
$\overline{\text{FAST } n = 9}$	188	4.90	179	5.15
FAST $n=12$	158	5.88	154	5.98
Original FAST $(n = 12)$	79.0	11.7	82.2	11.2
SUSAN	12.3	74.7	13.6	67.9
Harris	8.05	115	7.90	117
Shi-Tomasi	6.50	142	6.50	142
DoG	4.72	195	5.10	179

- 3.0GHz Pentium 4
- Set 1: 992 × 668 pixels.
- set 2: 352×288 (quarter-PAL) video.
- Percentage budget for PAL, NTSC, DV, 30Hz VGA.

Is it any good?

Repeatability

Is the same real-world 3D point detected from multiple views?

Repeat for all pairs in a sequence

FAST-ER: Enhanced Repeatability

• Define feature detector as:

A decision tree which detects points with a high repeatability.

- To evaluate repeatability:
 - 1. Detect features in all frames.
 - 2. Compute repeatability.
- That is hard to optimize!

 Optimize tree using simulated-annealing.
- Use more pixels than FAST.

FAST-ER: Enhanced Repeatability

• Use more pixels than FAST.

- 1. Higher repeatability is better.
- 2. Every pixel is a feature \Rightarrow repeatability is 100%.
- 3. A single detected feature can have 100% repeatability.

Multi-objective optimization needed:

$$cost = (1 + w_r R^{-2})(1 + w_n N^2)(1 + w_s S^2)$$

R =Repeatability.

N = Number of detected features.

- 1. Higher repeatability is better.
- 2. Every pixel is a feature \Rightarrow repeatability is 100%.
- 3. A single detected feature can have 100% repeatability.

Multi-objective optimization needed:

$$cost = (1 + w_r R^{-2})(1 + w_n N^2)(1 + w_s S^2)$$

R =Repeatability.

N = Number of detected features.

- 1. Higher repeatability is better.
- 2. Every pixel is a feature \Rightarrow repeatability is 100%.
- 3. A single detected feature can have 100% repeatability.

Multi-objective optimization needed:

$$cost = (1 + w_r R^{-2})(1 + w_n N^2)(1 + w_s S^2)$$

R =Repeatability.

N = Number of detected features.

- 1. Higher repeatability is better.
- 2. Every pixel is a feature \Rightarrow repeatability is 100%.
- 3. A single detected feature can have 100% repeatability.

Multi-objective optimization needed:

$$cost = (1 + w_r R^{-2})(1 + w_n N^2)(1 + w_s S^2)$$

R =Repeatability.

N =Number of detected features.

Operations 'Similar' leaf nodes are constrained.

Operations
Select a random node. If node is a leaf:

Operations flip the class (if possible), ...

... or ...

Node (with offset) Leaf (non corner) Leaf (corner)

grow a random subtree.

If node is a non-leaf:

randomize the offset, ...

... or ...

Node (with offset) Leaf (non corner) Leaf (corner)

Operations replace node with a leaf, ...

Node (with offset)

Leaf (corner)

... or ...

Node (with offset) Leaf (non corner) Leaf (corner)

delete one subtree

Operations and replace it with a copy of another subtree.

Reducing the burden on the optimizer

Corners should be invariant to:

- Rotation.
- Reflection.
- Intensity inversion.

There are 16 combinations:

- 4 simple rotations (multiples of 90°).
- 2 reflections.
- 2 intensity inversions.

Run the detector in all combinations.

Iteration scheme

For 100,000 iterations:

- 1. Randomly modify tree.
- 2. Compile directly to machine code.
- 3. Detect features.
- 4. Compute repeatability.
- 5. Evaluate cost.
- 6. Keep the modification if:

$$e^{\frac{\text{oldcost}-\cos t}{\text{temp}}} > \text{rand}(0,1)$$

7. Reduce the temperature.

Now repeat that 200 times.

Training data for repeatability

- Change in scale.
- Mostly affine warping.
- Varied texture.

Results

Comparisons

- FAST detectors
 - Which N is best?
 - Which of the 200
 FAST-ER detectors is best?
- Other detectors
 - Harris
 - o Shi-Tomasi
 - DoG (Difference of Gaussians)
 - Harris-Laplace
 - SUSAN
- What parameters should these detectors use?

Comparisons

- FAST detectors
 - Which N is best?
 - Which of the 200
 FAST-ER detectors is best?
- Other detectors
 - Harris
 - Shi-Tomasi
 - DoG (Difference of Gaussians)
 - Harris-Laplace
 - SUSAN
- What parameters should these detectors use?

Results: repeatability curves

Aggregate results

FAST-ER FAST-9 DoG Shi & Tomasi Harris 1313.6 1304.57 0.8 1275.59 1304.57 0.6 Shi & Tomasi 1219.08 Harris-Laplace 1153.13 FAST-12 1121.53	Detector	$\mid AUR$			
DoG 1275.59 Image: Control of the c	FAST-ER	1313.6		1	
Shi & Tomasi 1219.08 Harris 1195.2 Harris-Laplace 1153.13	FAST-9	1304.57		0.8	
Harris 1195.2 - 0.2 Harris-Laplace 1153.13 - 0.2	DoG	1275.59	ability	0.6	X TATALAN
Harris 1195.2 - 0.2 Harris-Laplace 1153.13 - 0.2	Shi & Tomasi	1219.08	epeata	0.4	
	Harris	1195.2	Ř	0.2	
FAST-12 1121.53	Harris-Laplace	1153.13		_	
	FAST-12	1121.53		U	:
SUSAN 1116.79	SUSAN	1116.79			
Random 271.73	Random	271.73			

How FAST? (very)

Detector	Set 1		Set 2	
	Pixel rate (MPix/s)	%	MPix/s	%
$\overline{\text{FAST } n = 9}$	188	4.90	179	5.15
FAST $n=12$	158	5.88	154	5.98
Original FAST $(n = 12)$	79.0	11.7	82.2	11.2
FAST-ER	75.4	12.2	67.5	13.7
SUSAN	12.3	74.7	13.6	67.9
Harris	8.05	115	7.90	117
Shi-Tomasi	6.50	142	6.50	142
DoG	4.72	195	5.10	179

- 3.0GHz Pentium 4
- Set 1: 992×668 pixels.
- set 2: 352×288 (quarter-PAL) video.
- Percentage budget for PAL, NTSC, DV, 30Hz VGA.

Conclusions on FAST

- FAST is very fast
 - And very repeatable.
- FAST-ER is even more repeatable.
- Source code is available:

http://mi.eng.cam.ac.uk/~er258/work/fast.html

Object Detection

Object detection

Target detection

Traffic analysis

Damian Eads, Edward Rosten, David Helmbold

Object detection: difficulties

Which ones are cars?

- Problem is unstructured Image $\rightarrow \{(x_1, y_1), (x_2, y_2), \cdots\}$
- Number of objects unknown a priori
- Not a fixed set of labels

What is a detection anyway?

- 1. Not pixels! 50% of pixels on all of the objects is not the same as all of the pixels on 50% of the objects.
- 2. It depends...

Measures of performance

- Identification:
 - Within boundary
- Tracking
 - Nearby, but with unique assignment
- Counting
 - Unique assignment
 - Within radius of sliding window

Measures of performance

- Identification:
 - Within boundary
- Tracking
 - Nearby, but with unique assignment
- Counting
 - Unique assignment
 - Within radius of sliding window

Measures of performance

- Identification:
 - Within boundary
- Tracking
 - Nearby, but with unique assignment
- Counting
 - Unique assignment
 - Within radius of sliding window

System layout

System layout

System layout

Feature extraction

- Features are small image processing programs.
- Stochastic generative grammar for making programs
- Composed of basic operators: morphology, percentiles, Gabor filters, Haar-like features, edges,
- Combined using: addition, subtraction, multiplication, sigmoiding, ...

Feature grammars

- A grammar consists of productions $P \rightarrow A|B$
- Productions are expanded stochastically:
- P can be turned into A or B
- P is non-terminal
- A and B are terminal
- Non-terminals expanded until only terminals remain
- Expansion rules have domain expertise built in
- Intelligent sampling of feature space

```
Feature(x) \rightarrow \operatorname{Binary}(\operatorname{Unary}(x), \operatorname{Unary}(x)) | \operatorname{Unary}(x)
\operatorname{Unary}(x) \rightarrow x | \operatorname{Erode}(x, \operatorname{RandomSE}())
\operatorname{Binary}(x, y) \rightarrow \operatorname{Add}(x, y) | \operatorname{Multiply}(x, y)
\operatorname{RandomSE}() \rightarrow \operatorname{Ellipse}(\mathcal{U}(0, \pi), \mathcal{U}(1, 10), \mathcal{U}(1, 10))
```

```
f(x) = \text{Feature}(x)
```

```
Feature(x) \rightarrow Binary(Unary(x), Unary(x) | Unary(x)
Unary(x) \rightarrow x \mid \text{Erode}(x, \text{RandomSE}())
Binary(x, y) \rightarrow Add(x, y) | Multiply(x, y)
RandomSE() \rightarrow Ellipse(\mathcal{U}(0, \pi), \mathcal{U}(1, 10), \mathcal{U}(1, 10))
```

```
f(x) = Binary(Unary(x), Unary(x))
```

```
Feature(x) \rightarrow \operatorname{Binary}(\operatorname{Unary}(x), \operatorname{Unary}(x)) | \operatorname{Unary}(x)
\frac{\operatorname{Unary}(x)}{\operatorname{Unary}(x)} \rightarrow x | \operatorname{Erode}(x, \operatorname{RandomSE}())
\operatorname{Binary}(x, y) \rightarrow \operatorname{Add}(x, y) | \operatorname{Multiply}(x, y)
\operatorname{RandomSE}() \rightarrow \operatorname{Ellipse}(\mathcal{U}(0, \pi), \mathcal{U}(1, 10), \mathcal{U}(1, 10))
```

```
f(x) = Binary(Unary(x), Erode(x, RandomSE()))
```

```
Feature(x) \rightarrow \operatorname{Binary}(\operatorname{Unary}(x), \operatorname{Unary}(x)) | \operatorname{Unary}(x)
\operatorname{Unary}(x) \rightarrow x | \operatorname{Erode}(x, \operatorname{RandomSE}())
\operatorname{Binary}(x, y) \rightarrow \operatorname{Add}(x, y) | \operatorname{Multiply}(x, y)
\operatorname{RandomSE}() \rightarrow \operatorname{Ellipse}(\mathcal{U}(0, \pi), \mathcal{U}(1, 10), \mathcal{U}(1, 10))
```

```
f(x) = \text{Binary}(\text{Unary}(x), \text{Erode}(x, \text{Ellipse}(\frac{2\pi}{5}, 5.1, 1.2)))
```

```
Feature(x) \rightarrow \operatorname{Binary}(\operatorname{Unary}(x), \operatorname{Unary}(x)) | \operatorname{Unary}(x)
\frac{\operatorname{Unary}(x)}{\operatorname{Unary}(x)} \rightarrow x | \operatorname{Erode}(x, \operatorname{RandomSE}())
\operatorname{Binary}(x, y) \rightarrow \operatorname{Add}(x, y) | \operatorname{Multiply}(x, y)
\operatorname{RandomSE}() \rightarrow \operatorname{Ellipse}(\mathcal{U}(0, \pi), \mathcal{U}(1, 10), \mathcal{U}(1, 10))
```

```
f(x) = \text{Binary}(x, \text{Erode}(x, \text{Ellipse}(\frac{2\pi}{5}, 5.1, 1.2)))
```

```
Feature(x) \rightarrow \operatorname{Binary}(\operatorname{Unary}(x), \operatorname{Unary}(x)) | \operatorname{Unary}(x)
\operatorname{Unary}(x) \rightarrow x | \operatorname{Erode}(x, \operatorname{RandomSE}())
\operatorname{Binary}(x, y) \rightarrow \operatorname{Add}(x, y) | \operatorname{Multiply}(x, y)
\operatorname{RandomSE}() \rightarrow \operatorname{Ellipse}(\mathcal{U}(0, \pi), \mathcal{U}(1, 10), \mathcal{U}(1, 10))
```

```
f(x) = \text{Multiply}(x, \text{Erode}(x, \text{Ellipse}(\frac{2\pi}{5}, 5.1, 1.2)))
```

```
Feature(x) \rightarrow \operatorname{Binary}(\operatorname{Unary}(x), \operatorname{Unary}(x)) | \operatorname{Unary}(x)
\operatorname{Unary}(x) \rightarrow x | \operatorname{Erode}(x, \operatorname{RandomSE}())
\operatorname{Binary}(x, y) \rightarrow \operatorname{Add}(x, y) | \operatorname{Multiply}(x, y)
\operatorname{RandomSE}() \rightarrow \operatorname{Ellipse}(\mathcal{U}(0, \pi), \mathcal{U}(1, 10), \mathcal{U}(1, 10))
```

$$f(x) = \text{Multiply}(x, \text{Erode}(x, \text{Ellipse}(\frac{2\pi}{5}, 5.1, 1.2)))$$

$$I \qquad \times \qquad \times$$

$$\text{Ellipse''}, \frac{2\pi}{5}, 5.1, 1.2$$

$$\text{Erode}$$

Some random features

0.6

Turning pixels into objects

• Large local maxima Choice of pre-smoothing radius

• KDE on large local maxima Also kernel size

Connected components
 Choice of threshold

Optimize over data not used for boosting.

Results

Results: Target detection

Results: Tracking

Conclusions

- New features: Grammar-guided features
- Training against scoring measures

http://users.soe.ucsc.edu/~eads/software.shtml

More results

Sensitivity to w_i

Results: Perspective (box) dataset

Results: Geometric dataset

Results: Bas-relief dataset

Results: Scale and rotation (bark) dataset

Bark dataset

Results: Blur (bikes) dataset

Results: Scale and rotation (boat) dataset

Results: Perspective (graffiti) dataset

Results: Lighting dataset

Results: Blur (trees) dataset

Results: JPEG compression dataset

Results: Perspective (wall) dataset

Evaluation: Datasets (3D Models)

14 images:

15 images:

8 images:

Evaluation: Homographies

6 images per set:

