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Optimizing the right thing
Two examples:

1. Corner detection
2. Object detection

What are they and how do you optimize them?



What is corner detection?

Useful for:

e 2D tracking, 3D tracking, SLAM, object recognition,
etc.

e Visually ‘salient’
features.

e Localized in 2D.
e Sparse.

e High ‘information’
content.

e Repeatable between
Images.
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The segment-test detector
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The segment-test detector
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Contiguous arc ofV or more pixels:
e All much brighter tharp (brighter tharp + ¢).
or
e All much darker tharp (darker tharp — t).



FAST feature detection




FAST feature detection

e Pixels are either:
o Much brighter.
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FAST feature detection

e Pixels are either:
o Much brighter.
o Much darker.
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FAST feature detection

e Pixels are either: e Representring as a
o Much brighter. ternary vector.
o Much darker. e Classify vectors using
o Similar. segment test.




Traln a classifier

Decision tree classifiers are very efficient.
Ask: “What is the state of pixel?”
Question splits list in to 3 sublists.

Query each sublist.

Recurse until list contains all features or all non
features.

Choose questions to minimize entropy (ID3).

Use guestions on new feature.
Works forany V.



Output C++ code

A long strlng of nested If- eIse statements
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How FAST? (very)

Detector Setl Set 2
Pixel rate (MPix/s) % | MPix/ls %

FASTn =9 188 490, 179 5.15
FASTn = 12 158 5.88| 154 5.98
Original FAST (o = 12) 79.0 11.7) 82.2 11.2
SUSAN 12.3 74.7) 13.6 67.9
Harris 8.05 115| 7.90 117
Shi-Tomasi 6.50 142| 6.50 142
DoG 4.72 195| 5.10 179

e 3.0GHz Pentium 4
o Set 1:992 x 668 pixels.

o set 2:352 x 288 (quarter-PAL) video.

e Percentage budget for PAL, NTSC, DV, 30Hz VGA.



IS It any good?



Repeatability

Is the same real-world 3D point detected from multiple
views?

Detect features in frame 1 Detect features in frame 2

compare
warped feature
positions to detected

Warp frame 1 features in frame 2

to match frame 2

Repeat for all pairs in a sequence



FAST-ER: Enhanced Repeatability

e Define feature detector as:

e To evaluate repeatabillity:
1. Detect features in all frames.
2. Compute repeatabillity.

e That is hard to optimize!
Optimize tree using simulated-annealing.

e Use more pixels than FAST.



FAST-ER: Enhanced Repeatability

e Use more pixels than FAST.



Cost function

1. Higher repeatability is better.
2. Every pixel is a feature> repeatability is 100%.
3. A single detected feature can have 100% repeatabili

Multi-objective optimization needed:
cost = (1 + w,R*)(1 +w,N?)(1 + w,S?)
R = Repeatability.

N = Number of detected features.
S = Size of tree.
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Operations
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0 Node (with offset) Leaf (non corner) ‘ Leaf (corner



Operations
‘Similar’ leaf nodes are constrained.

Brighter

0 Node (with offset) Leaf (non corner) ‘ Leaf (corner



Operations
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Operations
Select a random node. If node Is a leaf:
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0 Node (with offset) Leaf (non corner) ‘ Leaf (corner



Operations
flip the class (if possible), ...

Brighter

0 Node (with offset) Leaf (non corner) ‘ Leaf (corner



Operations
LOr ...

Brighter

G Node (with offset) Leaf (non corner) ‘ Leaf (corner



Operations
grow a random subtree.

Brighter Darker
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Operations
If node Is a non-leatf:

Brighter

0 Node (with offset) Leaf (non corner) ‘ Leaf (corner



Operations
randomize the offset, ...

Brighter

0 Node (with offset) Leaf (non corner) ‘ Leaf (corner



Operations
LOr ...

Brighter
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Operations
replace node with a leatf, ...
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0 Node (with offset) Leaf (non corner) ‘ Leaf (corner



Operations
LOr ...

Brighter
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Operations
delete one subtree

Brighter

0 Node (with offset) Leaf (non corner) ‘ Leaf (corner



Operations
and replace it with a copy of another subtree.

Brighter Darker

5

0 Node (with offset) Leaf (non corner) ‘ Leaf (corner



Reducing the burden on the optimizer

Corners should be invariant to:
e Rotation.
e Reflection.
¢ |ntensity inversion.
There are 16 combinations:
e 4 simple rotations (multiples of 9}
o 2 reflections.
e 2 Intensity inversions.

Run the detector i/l combinations.



Iteration scheme

For 100,000 iterations:
1. Randomly modify tree.
Compile directly to machine code.
Detect features.
Compute repeatabillity.
Evaluate cost.

o s WD

Keep the modification If:

oldcost-cost

e t*mp > rand(0,1)

/. Reduce the temperature.
Now repeat that 200 times.




Training data for repeatabllity

e Change in scale.
e Mostly affine warping.
e \Varied texture.



Results



Comparisons

e FAST detectors
o Which NV iIs best?
o Which of the 200
FAST-ER detectors Is best?
e Other detectors
Harris
Shi-Tomasi
DoG (Difference of Gaussians)
Harris-Laplace
SUSAN

O
O
O
O
O
e What parameters should these detectors use?
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Results: repeatability curves




Aggregate results

Detector AUR
-AST-ER 1313.6
~FAST-9 1304.57
DOG 1275.59
Shi & Tomasi | 1219.08
Harris 1195.2
Harris-Laplace 1153.13
FAST-12 1121.53
SUSAN 1116.79
Random 271.73
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How FAST? (very)

Detector Setl Set 2
Pixel rate (MPix/s) % | MPix/ls %

FASTn =9 188 490 179 5.15
FASTn = 12 158 5.88| 154 5.98
Original FAST (o = 12) 79.0 11.7) 82.2 11.2
FAST-ER 75.4 12.2| 67.5 13.7
SUSAN 12.3 74.7) 13.6 67.9
Harris 8.05 115| 7.90 117
Shi-Tomasi 6.50 142| 6.50 142
DoG 4.72 195| 5.10 179

e 3.0GHz Pentium 4
o Set 1:992 x 668 pixels.

e set 2:352 x 288 (quarter-PAL) video.

e Percentage budget for PAL, NTSC, DV, 30Hz VGA.



Conclusions on FAST

e FAST Is very fast
o And very repeatable.

e FAST-ER Is even more repeatable.
e Source code Is available:

http://mi.eng.cam.ac.uk/"er258/work/fast.html



Object Detection



Object detection
Target detection

il 7% e A
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Object detection: difficulties
Which ones are cars?

L
=7

e Problem is unstructured
Image— {(z1,y1), (2,y2), - }
e Number of objects unknowa priori

e NoOt a fixed set of labels

ﬂ




What Is a detection anyway?

1. Not pixels! 50% of pixels on all of the objects is not
the same as all of the pixels on 50% of the objects.

2.Itdepends




Measures of performance

¢ |dentification:
o Within boundary

e Tracking
o Nearby, but with unique
assignment
e Counting
o Unique assignment

o Within radius of sliding
window
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System layout

Grammar guided features Post—process Weak classification
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System layout

Grammar guided features Post—process Weak classification
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System layout

Weak classification

Post—process

Grammar guided features
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Feature extraction

e Features are small image processing programs.
e Stochastic generative grammar for making programs

e Composed of basic operators: morphology,
percentiles, Gabor filters, Haar-like features, edges,

e Combined using: addition, subtraction, multiplication
sigmoiding, ...

RN
(=" (-




Feature grammars

A grammar consists gdroductions
P — A|B

Productions are expanded stochastically:

P can be turned intel or B

P I1s non-terminal

A andB areterminal

Non-terminals expanded until only terminals remain
Expansion rules have domain expertise built in
Intelligent sampling of feature space



Example

Featuréx) — Binary(Unary(x),Unary(x)) | Unary(x)
Unary(z) — x| Eroddxz, RandomSE))
Binary(z,y) — Add(x,y) | Multiply (z, y)
RandomSE() — Ellipse/(0, ), U(1,10), U(1,10))

f(x) = Featuréx)
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Example
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Example

Featuréx) — Binary(Unary(x),Unary(x)) | Unary(x)
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Some random features
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Turning pixels into objects

|

e Large local maxima
4 Choice of pre-smoothing radius

e KDE on large local maxima
Also kernel size

e Connected components
Choice of threshold

Optimize over data not used for boosting.




Results



Detection rate

Results: Target detection
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Detection rate

0.7

0.6 f

05 F

0.4

0.3 F

0.2

0.1F

Results: Tracking
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Conclusions

e New features: Grammar-guided features
e Training against scoring measures

http://users.soe.ucsc.edu/"eads/software.shtml












More results
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Results: Perspective (box) dataset

Box dataset
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Results: Geometric dataset

Maze dataset
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Repeatability

Results: Bas-relief dataset

Bas-relief dataset
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Results: Scale and rotation (bark)
dataset

Bark dataset
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Repeatability

Results: Blur (bikes) dataset

Bikes dataset
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Results: Scale and rotation (boat) datase!

Boat dataset

0.9
0.8 =
5 07 oo-a-aon
ZE 0.6
s 05 DoG
S 04 FAST-12 ——
§ 0.3 FAST-9 —x—

FAST-ER —&—
Harris —=—
Harris-Laplace —e—

- . . . Random —e—
0 500 1000 1500 2000 Shi-Tomasi —=—

Corners per frame SUSAN




Results: Perspective (graffiti) dataset

Graffiti dataset
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Repeatability
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Results: Lighting dataset

Leuven dataset
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Results: Blur (trees) dataset

Trees dataset
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Results: JPEG compression dataset

UBC dataset
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Results: Perspective (wall) dataset

Wall dataset
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Evaluation: Datasets (3D Models)
14 images:

:




Evaluation: Homographies
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