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Abstract— The repeatability and efficiency of a corner detector the result of geometric discontinuities, such as the carioér
determines hOW Iik_ely itis to be useful in a real-world applicati_on. real world objects, but they may also arise from small patche
The repeatability is importand because the same scene wewedof texture. Most algorithms are capable of detecting boti&i

from different positions should yield features which correspond to - . . .
the same real-world 3D locations[[1]. The efficiency is important of points of interest, though the algorithms are often dest

because this determines whether the detector combined with 0 detect one type or the other. A number of the detectors

further processing can operate at frame rate. described below compute a corner resporsg,and define
Three advances are described in this paper. First, we present corners to be large local maxima 6f.

a new heuristic for feature detection, and using machine learning 1) Edge based corner detector&n edge (usually a step

we derive a feature detector from this which can fully process live h in int itv) i . ds to the b d
PAL video using less than 5% of the available processing time. By change in intensity) in an image corresponds to the bound-

comparison, most other detectors cannot even operate at fragn ary b(_-:‘t\Neen_tWO regions. At corners, this boundary changes
rate (Harris detector 115%, SIFT 195%). Second, we generalize direction rapidly.

the detector, allowing it to be optimized for repeatability, with a) Chained edge based corner detectotdany tech-
little loss of efficiency. Third, we carry out a rigorous comparison niques have been developed which involved detecting and

of corner detectors based on the above repeatability criterion haini d ith iew t lvsing th i f th
applied to 3D scenes. We show that despite being principally con- chaining edges with a view 10 analysing the properties or the

structed for speed, on these stringent tests, our heuristic dector ~€dge, often taking points of high curvature to be cornersMa
significantly outperforms existing feature detectors. Finally, the early methods used chained curves, and since the curves are

comparison demonstrates that using machine learning produces highly quantized, the techniques concentrate on methads fo
significant improvements in repeatability, yielding a detector that effectively and efficiently estimating the curvature. A aoon
is both very fast and very high quality. . .

approach has been to use a chord for estimating the slope of

Index Terms— Corner detection, feature detection. a curve or a pair of chords to find the angle of the curve at a
point.
. INTRODUCTION Early methods computed the smallest angle of the curve

.. over chords spanning different numbers of links. Cornees ar

Yifined as local minima of angle![2] after local averaging [3]

.taS'.(S such as trac_kmg, _Iocallsatlon, S.LAM (S'mUItanG.‘\(.)%ternatively, corners can be defined as isolated discaittas
localisation and mapping), image matching and recognmoIJp1 the mean slope, which can be computed using a chord

This need has driven the development of a Iarge .numbers anning a fixed set of links in the chain [4]. Averaging can
corner detectors. However, despite the massive increase N <od 1o compute the slope and the length of the curve
_com_puting power since the in(_:eptipn Of. comer detectors, IEed to determine if a point is isolated [5]. The angle can be
:CS stll mtle tha_t t\_/vhefn ptrocezs[{ng tllve deeol_s;ttlrequs_ att fu omputed using a pair of chords with a central gap, and peaks
fz)e:nf]uert;]ae?, '%Xézslrsl?n eature detectors leave litlle 1T aMyet \ith certain widths (found by looking for zero crossings of
processing. . . H1e angle) are defined as corners [6].
In the applications described above, corners are typica YInstead of using a fixed set of chord spans, some methods

?het;ect::]ed anmd Tatlc\r/]ve(:ldmtoir?t da:ab:ste, tth(;Jsr I 'St'mpolfrt%%]pute a ‘region of support’ which depends on local curve
at the same real-world points are delected repea abiy %roperties. For instance local maxima of chord lengths @n b
multiple views [1]. The amount of variation in viewpoint Lewd used to define the region of support, within which a corner

which this condition should hold depends on the apr)"C&tio'flr1ust have maximal curvature![7]. Corners are can be defined
as the centre of a region of support with high mean curvature,

Il. PREVIOUS WORK where the support region is large and symmetric about its
A. Corner detectors centre [8]. The region free from significant discontinigtie

ground the candidate point can be used with curvature being

Here we review the literature to place our advances )
computed as the slope change across the region [9] or the

context. In the literature, the terms “point feature”, ‘iea”, o ‘
“interest point” and “corner” refer to a small point of inest angle to the region’s endpoints [10].

with variation in two dimensions. Such points often arise asAn alternative to using chords of the curves is to apply
smoothing to the points on the curve. Corners can be defined
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all curves, so corners can also be detected at high curvatadge and multiplying by the magnitude of the gradient:
points which have stable positions under a range of smaogthin 92002 + Gyy92 — 202y 929y
_ Yy x

scales [13]. As smoothing is decreased, curvature maxima Ck 5 3 Q)
bifurcate, forming a tree over scale. Branches of a tree lwhic 9z 9y
are longer (in scale) than the parent branch are considetgitere, in general,
as stable corner points [14]. Instead of Gaussian smoathing 5 5
extrema of the wavelet transforms of the slope [15] or wavele _ 99 — 99 etc
. 9z a ’ Jzx a 27 R
transform modulus maximum of the angle [16], [17] over o or o or o
multiple scales can be taken to be corners. andy is either the image or a bivariate polynomial fitted locally

. . to the image/[35].Cx can also be multiplied by the change
The smoothing scale can be chosen adaptively. The Cur ﬁ’edge direction along the edge [36].

ture Scale Space technique [18] uses a scale proportiona Zorner strength can also be computed as rate of change in

the Ieng;h and def_me_s_ comers at maxima of curvature_vx_/h fadient angle when a bicubic polynomial is fitted to the loca
the maxima are significantly larger than the closest minim age surface [37], [38]:

Locally adaptive smoothing using anisotropic diffusio®][br ) ' )

smoothing scaled by the local variance of curvature [20ghav Oy = _2cxcy2 — CpCyCay + CyCy2 @)

also been proposed. (2 + Ci)%

Instead of direct smoothing, edges can be parameteriseldere, for exampleg,, is the coefficient ofry in the fitted
with cubic splines and corners detected at points of higlolynomial. If edgels are only detected at the steepestqgfart
second derivative where the spline deviates a long way fram edge, then a score computing total image curvature at the

the control point[[21], [22]. edgels is given by:
A different approach is to extend curves past the endpoints Cw=V’I—-5§ |v_r|2 ) 3)

by following saddle minima or ridge maxima in the gradi- . . .
ent image until a nearby edge is crossed, thereby findi%erevj is the image gradient [39].

junctions [23]. Since the chain code number correspon S2) Greylevel derivative based detector$he assumption

roughly to slope, approximate curvature can be found usin atlt hcornefr.:, etX'St aloc?g gdtgﬁf '? atn |nadeq;§tedepdil tfor
finite differences, and corners can be found by identifyi ches of texture and point fike features, and 1s diffica

specific patterns [24]. Histograms of the chain code numbe € agjunctlonsl. Thle.refore a Ia}{rgl]e r}:umbgr. of dztectgr_sauft)er
on either side of the candidate point can be compared usi (GECty on greylevel Images without requiring edge

. . ne of the earliest detectors [40] defines corners to be local
normalized cross correlation and corners can be found a

L extrema in the determinant of the Hessian:
small local minima [25]. Also, a measure of the slope can bé

computed using circularly smoothed histograms of the chain Coer = |H[I] | = Lixlyy — (Iy)*. 4)

code numbersTZG]. Points can be classified as corners usilr}gs is frequently referred to as the DET operat@er moves
fuzzy rules applied to measures computed from the fon"’aéﬁjong a line as the scale changes. To counteract this, DET
and backward arm and the curve angle![27] extrema can be found two scales and connected by a line.
b) Edgel based corner detectorsChained edge tech- Corners are then taken as maxima of the Laplacian along the
niques rely on the method used to perform segmentation dife [41].
edge chaining, so many techniques find edge points (edgelsiistead of DET maxima, corners can also be taken as the
and examine the local edgels or image to find corners.  gradient maxima on a line connecting two nearby points of
eh'tguh Gaussian curvature of opposite sign where the gradi-
edgels in a3 x 3 window can be assigned a curvature, angnt direction matches the sign change [42]. By considering

corners found as maxima of curvature in a local window [28?;_radient_s as elementary currents, the magnitude of the cor-
Corners can be also found by analysing edge properties in ﬁ-gppndmg magnetic vector potential can be computed. The
window scanned along the edge [29]. A generalized Hou adient qf thl_s is taken normal and orthogonal to th(_a local
transform [30] can be used which replaces each edgel wit&"U" d.|tre§t|or}, tﬁnd thjscorner strength is the multifle o
line segment, and corners can be found where lines interséla? r;agLr:)lcualeS%D eSSL% of].S uared Differences) detectors:
i.e. at large maxima in Hough space [31]. In a manner Sim“ﬁreat ) ( d ) :

. . : ures can be defined as points with low self-similarity in
to chaining, a short line segment can be fitted to the edgads, %II directions. The self-similarity of an image patch can be

the corner strength found by the change in gradient dinectio . .
along the line segment [32]. Edge detectors often fail an%easured by taking the SSD between an image patch and

junctions, so corners can be defined as points where sevgfaslh'fted version of itself [44]. This is the basis for a large

) L ass of detectors. Harris and Stephens [45] built on this by
edges at different angles end nearby [33]. By finding bo{(::ho puting an approximation to the second derivative of the

edges and thell’.dll’eCtI.OHS., a patqh onan edge can be compgg with respect to the shift. This is both computationally
to patches on either side in the direction of the contour,na fi . : . .
more efficient and can be made isotropic. The result is:

points with low self-similarity [34]. R
Rapid changes in the edge direction can be found by H-= /Ié 1.1, : (5)
measuring the derivative of the gradient direction along an 1.1, I}

For instance, each combination of presence or absenc



where ©— denotes averaging performed over the area of tlagproach. An image pyramid is built and features are detecte
image patch. Because of the wording used in [45], it is oftdsy computingC; at each layer of the pyramid. Features are
mistakenly claimed thaH is equal to the negative secondselected if they are a local maximum@f; in the image plane
derivative of the autocorrelation. This is not the case bsea and a local maxima of the LoG across scales.
the SSD is equal to the sum of the autocorrelation and someRecently, scale invariance has been extended to consider
additional terms' [46]. features which are invariant to affine transformations [57]
The earlier Brstner [47] algorithm is easily easily explained61], [62], [63]. However, unlike the 3D scale space, the 6D
in terms of H. For a more recently proposed detector [48], iffine space is too large to search, so all of these detectors
has been shown showin [49] that under affine motion, it is bettart from corners detected in scale space. These in twn rel
ter to use the smallest eigenvalueHfas the corner strengthon 2D features selected in the layers of an image pyramid.
function. A number of other suggestions [45], [50], [49]1]5 3) Direct greylevel detectorsAnother major class of corner
have been made for how to compute the corner strength fraletectors work by examining a small patch of an image to see
H, and these have been shown to all be equivalent to varigtig “looks” like a corner. The detectors described in theper
matrix norms ofH [52]. H can be generalized by generalizingelong in this section.
the number of channels and dimensionality of the image [53] a) Wedge model detectorsA number of techniques
and it can also be shown that that [47], [49], [54] are eqeiwal assume that a corner has the general appearance of one or
to specific choices of the measure used in [51]. more wedges of a uniform intensity on a background of
H can be explained in terms of the first fundamental different uniform intensity. For instance a corner can be
form of the image surface [55]. From analysis of the secomdodelled as a single [64] or family [65] of blurred wedges
fundamental form, a new detector is proposed which detegthere the parameters are found by fitting a parametric model.
points where the probability of the surface being hyperboliThe model can include angle, orientation, contrast, blesgn
is high. and curvature of a single wedge [66]. In a manner similar to
Instead of local SSD, general template matching, givgB7], convolution masks can be derived for various wedges
a warp, appearance model and pointwise comparison whighich optimize signal to noise ratio and localisation error
behaves similarly to the SSD (sum of squared differences) fander assumption that the image is corrupted by Gaussian
small differences can be considered [56]. The stabilityhwitnoise [68].
respect to the match parameters is derived, and the result it is more straightforward to detect wedges in binary images
a generalization oH (where H is maximally stable for no and to get useful results, local thresholding can be used
appearance model, linear translation and SSD matchingg. Tto binarize the image [69]. If a corner is a bilevel wedge,
is used to derive detectors which will give points maximallphen a response function based on local Zernike moments
stable for template matching, given similarity transformsan be used to detect corners [70]. A more direct method
illumination models and prefiltering. for finding wedges is to find points where where concentric
b) Laplacian based detectorsAn alternative approach contiguous arcs of pixels are significantly different frohe t
to the problem of finding a scalar value which measures tientre pixel[[71]. According to the wedge model, a cornet wil
amount of second derivative is to take the Laplacian of thee the intersection of several edges. An angle-only Hough
image. Since second derivatives greatly amplify noise, th@&nsform [72] is performed on edgels belonging to lines
noise is reduced by using the smoothed Laplacian, whichgassing through a candidate point to find their angles and
computed by convolving the image with the LoG (Laplaciahence detect corners [73]. Similar reasoning can be used to
of a Gaussian). Since the LoG kernel is symmetric, orterive a response function based on gradient moments tctdete
can interpret this as performing matched filtering for feesu V-, T- and X- shaped corners [74]. The strength of the edgels,
which are the same shape as a LoG. As a result, the variamege angle and dissimilarity of the wedge regions has also
of the Gaussian determines the size of features of intetestbeen used to find corners [75].
has been noted [57] that the locations of maxima of the LoG b) Self dissimilarity: The tip of a wedge is not self-
over different scales are particularly stable. similar, so this can be generalized by defining corners agpoi
Scale invariant corners can be extracted by convolving thich are not self-similar. The proportion of pixels in adlis
image with a DoG (Difference of Gaussians) kernel at a wariearound a centre (atucleu$ which are similar to the centre is a
of scales (three per octave) and selecting local maxima rimeasure of self similarity. This is the USAN (univalue segie
space and scalé [68]. DoG is a good approximation for Lo&similating nucleus). Corners are defined as SUSAN (sstalle
and is much faster to compute, especially as the intermeedi&tSAN, i.e. local minima) points which also pass a set of rules
results are useful for further processing. To reject edge-| to suppress qualitatively bad features. In practice, a ke
features, the eigenvalues of the Hessian of the image are camm of the number of pixels inside a disc whose intensity is
puted and features are kept if the eigenvalues are suffigienwithin some threshold of the centre value is used [76]. COP
similar (within a factor of 10). This method can be contrestg(Crosses as Oriented Pair) [77] computes dominant dimestio
with (3), where the Laplacian is compared to the magnitudesing local averages USANSs of a pair of oriented crosses, and
of the edge response. If two scales per octave are satigfactdefine corners as points with multiple dominant directions.
then a significant speed increase can be achieved by usin&elf similarity can be measured using a circle instead of a
recursive filters to approximate Gaussian convolution.[59] disc [78]. The SSD between the center pixel and the pixels at
Harris-Laplace|[60] features are detected using a similaither end of a diameter line is an oriented measure of self-



dissimilarity. If this is small in any orientation then theiptis The tests fall into three broad categcﬁtes

not a corner. This is computationally efficient since thecess 1) Corner detection as object recognitioince there is
can be stopped as soon as one small value is encountered. This g good definition of exactly what a corner should look
diffel‘ence betWeen the centre piXeI a.nd CirCle piXeIS is:luse images Where the performance iS eva|uated (|n terms
to estimate the Laplacian, and points are also required to be  of trye positives, false positives, etc...) as the image is

locally maximal in the Laplacian. altered using contrast reduction, warps and added noise.

Small regions with a large range in greyvalues can be used  since a synthetic image is used, corners exist only at
as corners. To find these efficiently, the image can be pegject  known locations, so the existence of false negatives and
on to thez andy axes and large peaks found in the second  fa|se positives is well defined. However, the method and
derivatives. Candidate corner locations are the intemesof results do not generalize to natural images.

these maxima projected back in to the image [80]. Pater  2) System performanc&he performance of an application
al. [81] proposes self similarity can be measured by comparing  (often tracking) is evaluated as the corner detector is
the centre pixel of a window to the median value of pixels in  changed. The advantage is that it tests the suitability of
the window. In practice, several percentile values (as spgo detected corners for further processing. However, poor
to just the 50 are used. results would be obtained from a detector ill matched
Self-dissimilar patches will have a high energy content.  to the downstream processing. Furthermore the results
Composing two orthogonal quadrature pair Gabor filtersgjive  do not necessarily generalize well to other systems. To
oriented energy. Corners are maxima of total energy (the sum  counter this, sometimes part of a system is used, though
of oriented energy over a number of directions) [82]. in this case the results do not necessarily apply to any
A fast radial symmetry transform is developed in [83] to system.
detect points. Points have a high score when the gradient i) Repeatability. This tests whether corners are detected

both radially symmetric, strong, and of a uniform sign along  from multiple views. It is a low level measure of
the radius. The detected points have some resemblance DoG corner detector quality and provides an upper bound

features. on performance. Since it is independent of downstream
¢) Machine learning based detectorgll the detectors processing, the results are widely applicable, but it is
described above define corners using a model or algorithm and possible that the detected features may not be useful.
apply that algorithm directly to the image. An alternatigeo Care must be used in this technique, since the trivial
train a classifier on the model and then apply the classifier to  detector which identifies every pixel as a corner achieves
the image. For instance, a multilayer perception can beddi 100% repeatability. Furthermore, the repeatability does
on example corners from some model and applied to the image not provide information about the usefulness of the
after some processing [84], [85]. detected corners for further processing. For instance, the

Human perception can be used instead of a model [86]:  brightest pixels in the image are likely to be repeatable
images are shown to a number of test subjects. Image losation  but not especially useful.

which are consistently fixated on _(as me_asured by an eygp the first category, Rajan and Davidson [88] produce a
tracking system) are taken to be interesting, and a SUPPQffmper of elementary test images with a very small number of
vector machine is trained to recognize these points.  corners (1 to 4) to test the performance of detectors asugrio
It a classifier is used, then it can be trained according [rameters are varied. The parameters are corner angheycor
how a corner should behave, i.e. that its performance inggy, length, comer adjacency, corner sharpness, contnast a
system for evaluating detectors should be maximized. luji 5qgitive noise. The positions of detected corners are aédul
and Olague [87] state that detected points should have a highyinst the actual corner positions as the parameters reelva
repeatability (as defined by [1]), be scattered uniformisoss  cooperet. al. [34], [89] use a synthetic test image consisting
the image and that there should be at least as many poigf$egions of uniform intensity arranges to create L-, T-axd
detected as requested. A corner detector function is aphi x_shaned corners. The pattern is repeated several timés wit
(using genetic programming) to maximize the score based g8creasing contrast. Finally, the image is blurred and Sans
these measures. noise is added. Chest. al. [85] use a related method. A
The FASTx detector (described in Sectionlll) is relateqnown test pattern is subjected to a number random affine
to the wedge-model style of detector evaluated using aec"%arps and contrast changes. They note that this isena
surrounding the candidate pixel. To optimize the deteavor fjy ¢ tractable. They also provide an equivalent to the ROC
speed, this model is used to train a decision tree classifigr qReceiver Operating Characteristic) curve. Zhatgal. [90]

the classifier is applied to the image. The FAST-ER detecigenerate random corners according to their model and plot
(described in Section V) is a generalization which allows tocalization error, false positive rate and false negatite

detector to be optimized for repeatability. against the detector and generated corner parametersetLuo
al. use an image of a carefully constructed scene and plot
B. Comparison of feature detectors the proportion of true positives as the scale is varied argeno

Cons_lderably less work has been dP”e O'_" comparison antregs for the localisation accuracy are not considered $ie for most
evaluation of feature detectors than on inventing new detec applications the presence or absence of useful cornere intiting factor



is added for various corner angles.

Mohanna and Mokhtarian [91] evaluate performance usi
several criteria. Firstly, they define @nsistentdetector as
one where the number of detected corners does not v
with various transforms such as addition of noise and affi
warping. This is measured by the ‘consistency of corn
numbers’ (CCN):

CCN =100 x 1.1~ Ime=mel (6)

wheren; is the number of features in the transformed image
andn, is the number of features in the original image. This

. . . Fig. 1
test does not determine the quality of the detected cormers 12 pOINT SEGMENT TEST CORNER DETECTION IN AN IMAGE PATCHTHE

any way, so they also propose measuring the accuracy (ACU)
as:

HIGHLIGHTED SQUARES ARE THE PIXELS USED IN THE CORNER

Mg | Na DETECTION. THE PIXEL AT p IS THE CENTRE OF A CANDIDATE CORNER
n. n
ACU = 100 x %, @) THE ARC IS INDICATED BY THE DASHED LINE PASSES THROUGH.2
CONTIGUOUS PIXELS WHICH ARE BRIGHTER THANp BY MORE THAN THE

wheren, is the number of detected corners, is the number
of so-called ‘ground truth’ corners and, is the number of
detected corners which are close to ground truth cornenseSi
real images are used, there is no good definition of ground
truth, so a number of human test subjects (e.g. 10) familiprojected onto the planar scene using an overhead projector
with corner detection in general, but not the methods undalfow accurate computation of the homography. To measure
test, label corners in the test images. Corners which 70%the suitability of interest points for further processirtge
the test subjects agree on are kept as ground truth corn@rformation content of descriptors of patches surrounding
This method unfortunately relies on subjective decisions. detected points is also computed.

Remarkably, of the systems above, only [85], [88] and [86]
provide ROC curves (or equivalent): otherwise only a single [1l. HIGH-SPEED CORNER DETECTION

point (without consistency on either axis of the ROC grapt) asT: Features from Accelerated Segment Test
is measured.

In the second category, Trajkovic and Hedley [78] define The segment test criterion operates by considerin.g'a circle
stability as the number of ‘strong’ matches, matches detec®f Sixt€en pixels around the corner candidaterhe original
over three frames in their tracking algorithm, divided by thdetector [95], [96] classifiep as a corner if there exists a set

total number of corners. Tissainayagama and Suterb [92] (¢ contiguous pixels in_ the cir.cle which are all brighter than

a similar method: a corner in frameis stable if it has been € intensity of the candidate pixé| plus a threshold, or all

successfully tracked from frame 1 to frameBaeet. al.[77] darker than/, —¢, as illustrated in Figure 1. was originally

detect optical flow using cross correlation to match comnef§0Sen to be twelve because it admits a high-speed test which

between frames and compare the number of matched corrfétd b? used to exclude a very !arge number of non-corers.

in each frame to the number of corners in the first frame. 1€ high-speed test examines pixels 1 and 9. If both of these
To get more general results than provided by system perf@f€ Withint if 1, thenp can not be a corner. |f can still be

mance, the performance can be computed using only one FaRCTNeN pixels 5 and 13 are examinedp I§ a corner then at

of a system. For instance, Mikolajczyk and Schmid [93] test'§ast three of these must all pe brighter thignt- ¢ or darker

large number of interest point descriptors and a small numtf8an{, —t. If neither of these is the case, thereannot be a

of closely related detectors by computing how accuraterin COmMer. The full segment test criterion can then be apphed t

est point matching can be performed. Moreels and Perona [éla? remalnlng_cgndldates_ b_y examining all pixels in theleirc

perform detection and matching experiments across a yaridt's detector in itself exhibits high performance, but énare

of scene types under a variety of lighting conditions. Thefi€Veral weaknesses:

results illustrate the difficulties in generalizing fromssgm 1) This high-speed test does not reject as many candidates

THRESHOLD.

performance since the best detector varies with both thieeho for n < 12, since the point can be a corner if only two

of descriptor and lighting conditions. out of the four pixels are both significantly brighter or
In the third category, Schmidt. al. [1] propose that when both significantly darker thap (assuming the pixels are

measuring reliability, the important factor is whether taene adjacent). Additional tests are also required to find if the

real-world features are detected from multiple views. For a ~ complete test needs to be performed for a bright ring or
image pair, a feature is ‘detected’ if it is extracted in one & darkring.

image and appears in the second. It is ‘repeated’ if it is2) The efficiency of the detector will depend on the or-
also detected nearby in the second. The repeatability is the dering of the questions and the distribution of corner
ratio of repeated features to detected features. They mperfo appearances. It is unlikely that this choice of pixels is
the tests on images of planar scenes so that the relationship optimal.

between point positions is a homography. Fiducial markess a 3) Multiple features are detected adjacent to one another.



B. Improving generality and speed with machine learning long string of nested if-else statements which is compiled a

Here we expand on the work first presented in [97] ari¢f€d as a corner detector. For highest speed operatiompdee c
present an approach which uses machine learning to addri§sgompiled using profile guided optimizations which allow
the first two points (the third is addressed in Section ll-cPranch prediction and block reordering optimizations.

The process operates in two stages. First, to build a cornefor further optimization, we force:,, =, and z, to be
detector for a givem, all of the 16 pixel rings are extracted a€qual. In this case, the second pixel tested is always the.sam
set of images (preferably from the target application doai Sllnce this is the case, th_e test agaln.st the first anq second
These are labelled using a straightforward implementation pixels can be performed in batch. This allows the first two
the segment test criterion for and a convenient threshold. (€sts to be performed in parallel for a strip of pixels using

For each location on the circle € {1...16}, the pixel at the vectorizing instructions present on many high perforcea
that position relative t@, denoted by — z, can have one of Microprocessors. Since most points are rejected afterests,

three states: this leads to a significant speed increase.
d, Lw <I,—t (darker) Note Fhat since the data contains mcomplete coverage of
L all possible corners, the learned detector is not precisely
Spoz =1 8, Iy—t< I ., <I,+1 (similar)
: same as the segment test detector. In the case of the RAST-
b, Iy+t< I, (brighter)

detectors, it is straightforward to include an instancewarg

Let P be the set of all pixels in all training images. Choosin§SSiPle combination of pixels (there a3&’ — 43,046, 721
an z partitions P into three subsets?;, P, and P,, where: combinations) with a low weight to ensure that tlhe learned
detector exactly computes the segment test cirterion.
P,={peP:S,,, =b}, 9)

and P; and P, are defined similarly. In other words, a giverC. Non-maximal suppression

choice ofz is used to partition the data in to three sets. The Since the Segment test does not Compute a corner response

set P; contains all points where pixet is darker than the function, non maximal suppression can not be applied djrect

center pixel by a thresholt] P, contains points brighter thanto the resulting features. For a given ast is increased,

the centre pixel by, and Ps contains the remaining pointsthe number of detected corners will decrease. Since-

where pixelz is similar to the centre pixel. 9 produces the best repeatability results (see Sectidn VI),
Let K, be a boolean variable which is trueyifis a corner yariations inn will not be considered. The corner strength

and false otherwise. Stage 2 employs the algorithm usedjdntherefore defined to be the maximum valuet dor which

ID3 [98] and begins by selecting thewhich yields the most g point is detected as a corner.

information about whether the candidate pixel is a corner, The decision tree classifier can efficiently determine the

measured by the entropy &f,,. _ class of a pixel for a given value of The class of a pixel (for
~ The total entropy ofi’ for an arbitrary set of corners), example, 1 for a corner, O for a non-corner) is a monotonyicall
IS: decreasing function of. Therefore, we can use bisection to

H(Q) = (c+ &) logy(c+ &) — clogy ¢ — log, & (10) efficientl_y fin<_j the_ point where the function chang_es from 1
. . 0 0. This point gives us the largest valuetofor which the
where ¢ =|{i€Q: K;istrug}|  (number of cornersgoim is detected as a corner. Sintés discrete, this is the
and c¢=[{ieQ:K,isfalsg|  (number of non coBigip) search algorithm.
Alternatively, an iteration scheme can be used. A pixel on
the ring ‘passes’ the segment test if it is not withinof
H, = H(P)— H(P;) — H(P;) — H(P,) (11) the centre. If enough pixels fail, then the point will not be
classified as a corner. The detector is run, and of all the
ipé)_(els which pass the test, th@mountby which they pass
is found. The threshold is then increased by the smallest of
these amounts, and the detector is rerun. This increases the

eachz is chosen to yield maximum information about théhreshold Just enoug_h to ensure that a_different pa_th _isntake
set it is applied to. The recursion process terminates wh _ough the tree. This process is then iterated until desect
the entropy of a subset is zero. This means thatpalh ars.

this subset have the same value I6}, i.e. they are either Because th? speed depend; strongly on the Iear.ned tree
all corners or all non-corners. This is guaranteed to occﬁpd thg ;pemﬂc processor architecture, neither techmmg
since K is an exact function of the data. In summary, thi definitive speed advantage over the other. Non maximal

procedure creates a decision tree which can correctlyit;;lasssuploress'on is performed indax 3 mask.

all corners seen in the training set and therefore (to a close

approximation) correctly embodies the rules of the chosen IV. MEASURING DETECTOR REPEATABILITY

FAST corner detector. For an image pair, a feature is ‘useful’ if it is extracted in
In some cases, two of the three subtrees may be the samera image and can potentially appear in the second (i.e. it

this case, the boolean test which separates them is removsdot occluded). It is ‘repeated’ if it is also detected tyar

This decision tree is then converted into C code, creatingtlee same real world point in the second. For the purposes

The choice ofx then yields the information gainid,):

Having selected the: which yields the most information,
the process is applied recursively on all three subsets
xp, is selected to partition?, in to Py, 4, Pys, Py, T IS

selected to partitiors in to P; 4, Ps s, Ps, and so on, where



Detect features in frame 1 Detect features in frame 2

Warp frame 1
to match frame 2

compare
warped feature
positions to detected
features in frame 2

Fig. 2
REPEATABILITY IS TESTED BY CHECKING IF THE SAME REAL-WORLD
FEATURES ARE DETECTED IN DIFFERENT VIEWSA GEOMETRIC MODEL IS
USED TO COMPUTE WHERE THE FEATURES REPROJECT TO

Fig. 3
BOX DATASET: PHOTOGRAPHS TAKEN OF A TEST RIGCONSISTING OF
PHOTOGRAPHS PASTED TO THE INSIDE OF A CUBOIDWITH STRONG
CHANGES OF PERSPECTIVECHANGES IN SCALE AND LARGE AMOUNTS
OF RADIAL DISTORTION. THIS TESTS THE CORNER DETECTORS ON
PLANAR TEXTURE.

of measuring repeatability this allows several featurethi
first image to match a single feature in the second image. The
repeatability,R, is defined to be

N, repeated
R= X 12
N, useful ( )

where Niepeated@Nd Nysefu @are summed over all image pairs in
an image sequence. This is equivalent to the weighted awerag
of the repeatabilities for each image pair, where the waight
is the number of useful features. In this paper, we generally ¥
compute the repeatability for a given number of features per
frame, varying between zero and 2000 features (fo#0a< 480
image). This also allows us to compute the area under the
repeatability curveA, as an aggregate score.

The repeatability measurement requires the location and
visibility of every pixel in the first image to be known in the Fig. 4
second image. In order to compute this, we use a 3D surface MAZE DATASET: PHOTOGRAPHS TAKEN OF A PROP USED IN AN
model of the scene to compute if and where where detect@dGMENTED REALITY APPLICATION. THIS SET CONSISTS OF TEXTURAL
features should appear in other views. This is illustrat®@d i FEATURES UNDERGOING PROJECTIVE WARPS AS WELL AS GEOMETRIC
Figure[2. This allows the repeatability of the detectors to FEATURES THERE ARE ALSO SIGNIFICANT CHANGES OF SCALE
be analysed on features caused by geometry such as corners
of polyhedra, occlusions and junctions. We also allow bas-

relief textures to be modelled with a flat plane so that the ) ) )
repeatability can be tested under non-affine warping. High frequencies are removed to reduce noise, while low

The definition of ‘nearby’ above must allow a small margiﬁrequenCieS are removed to reduce the impact of Iighting
of error ¢ pixels) because the alignment, the 3D model ar@anges. To Improve the speed of the system, the SSD is only
the camera calibration (especially the radial distortignjot computed using 1000 random Ioca.tlons_. .
perfect. Furthermore, the detector may find a maximum on_a' e datasets used are shown in Figure 3, Figure 4 and
slightly different part of the corner. This becomes moreljk Figurel 5. With thgse datasets, we have tried to capture a wide
as the change in viewpoint and hence change in shape of tRR9e of geometric and textural corner types.
corner become large.

Instead of using fiducial markers, the 3D model is aligned V. FAST-ER: BENHANCED REPEATABILITY
to the scene by hand and this is then optimised using a blendince the segment test detector can be represented as a
of simulated annealing and gradient descent to minimise ttegnary decision tree and we have defined repeatability, the
SSD (sum of squared differences) between all pairs of fram@stector can be generalized by defining a feature detector
and reprojections. To compute the SSD between fraraed to be a ternary decision tree which detects points with high
reprojected framej, the position of all points in framg repeatability. The repeatability of such a detector is a-non
are found in frame. The images are then bandpass filteredonvex function of the configuration of the tree, so we op-




x = 0 refers to the offset—1,4). Each leaf has a clask’,

with O for non-corners and 1 for corners. Apart from the root
node, each node is either orbad or s branch of its parent,
depending on the test outcome which leads to that branch. The
tree is constrained so that each leaf orsdmanch of its direct
parent hask’ = 0. This ensures that the number of corners
generally decreases as the threshold is increased.

Fig. 5 The simulated annealing optimizer makes random modifi-
BAS-RELIEF DATASET: THE MODEL IS A FLAT PLANE, BUT THERE ARE cations to the tree by first selecting a node at random and then
MANY OBJECTS WITH SIGNIFICANT RELIEF THIS CAUSES THE mutating it. If the selected node is:
APPEARANCE OF FEATURES TO CHANGE IN A NON AFFINE WAY FROM « a leaf, then with equal probability, either:
DIFFERENT VIEWPOINTS 1) Replace node with a random subtree of depth 1.

2) Flip classification of node. This choice is not avail-
able if the leaf class is constrained.

==== ===== « a node, then with equal probability, choose any one of:
[ | ] 1) Replace the offset with a random value0in. . 47.
[ | o 1| 2) Replace the node with a leaf with a random class
[ | Bam ] . .
T B ] (subject to the constraint).
Bolos] [ ] 3) Remove a randomly selected branch of the node and
20l | ] | ] replace it with a copy of another randomly selected
branch of that node. For examplepéranch may

be replaced with a copy of anbranch.

The randomly grown subtree consists of a single decisioe nod
(with a random offset i) ... 47), and three leaf nodes. With
_ the exception of the constrained leaf, the leaves of thidaan

Fig. 6 subtree have random classes. These modifications to the tree
POSITIONS OF OFFSETS USED IN THEAST-ERDETECTOR allow growing, mutation, mutation and shrinking of the tree
respectively. The last modification of the tree is motivated
by our observations of the FAST-9 detector. In FAST-9, a
Ia%rge number of nodes have the characteristic that two out
of the three subtrees are identical. Since FAST-9 exhibits
high repeatability, we have included this modification towl
EAST-ER to easily learn a similar structure.

timize the tree using simulated annealing. This results in
multi-objective optimization. If every point is detected a
feature, then the repeatability is trivially perfect. Alsbthe

tree complexity is allowed to grow without bound, then th e .
optimization is quite capable of finding one single feature | The modifications are accepted according to the Boltzmann

each image in the training set which happens to be repeat%?flptagﬁtecrrgﬁg;r;’s_Where the probabiliyof accepting a
Neither of these are useful results. To account for thisctss change )

function for the tree is defined to be: P—e —17k1 (14)

k= (1 i (wr>2> (1 i ig: (di)Q> (1 n (8>2> where  is the cost after application of the acceptance cri-
r N —~ \wn W " terion andT is the temperature. The temperature follows an
(13) exponential schedule:
where r is the repeatability (as defined ih (12)); is the oL
number of detected corners in frameN is the number of T = e Tmax, (15)
frames and is the size (number of nodes) of the decision tregvhere I .o« is the number of iterations. The algorithm is
The effect of these costs are controlled by, w,, andw,. initialized with a randomly grown tree of depth 1, and the
Note that for efficiency, repeatability is computed at a fixeglgorithm uses a fixed threshold, Instead of performing a
threshold as opposed to a fixed number of features per frarmsiagle optimization, the optimizer is rerun a number of #me
The corner detector should be invariant to rotation, raflect using different random seeds.
and intensity inversion of the image. To prevent excessiveBecause the detector must be applied to the images every
burden on the optimization algorithm, each time the tree iigration, each candidate tree in all sixteen transforomatiis
evaluated, it is applied sixteen times: at four rotation®, 9 compiled to machine code in memory and executed directly.
apart, with all combinations of reflection and intensityenv Since it is applied with sixteen transformations, the resgl
sion. The result is the logical OR of the detector applicatio detector is not especially efficient. So for efficiency, the
a corner is detected if any one of the sixteen applications @étector is used to generate training data so that a sirgge tr
the tree classifies the point as a corner. can be generated using the method described in Séction I11-B
Each node of the tree has an offset relative to the cenfrBe resulting tree contains approximately 30,000 non-leaf
pixel, z, with z € {0...47} as defined in Figurie 6. Therefore,nodes.



Parameter Value DoG SUSAN
Wy 1 Scales per octave 3 Distance threshid 4.0
Wn, 3,500 Initial blur o 0.8
W 10,000 Octaves 4 Harris-Laplace
o 30 Initial blur o 0.8
B 100 Harris, Shi-Tomasi Harris blur 3
t 35 Blur o 25 Octaves 4
Tmax 100,000 Scales per octave 10
Runs 100 General parameters
€ 5 pixels € 5 pixels
Training set| ‘box’ set, images 0-2. TABLE Il

TABLE |
PARAMETERS USED TO OPTIMIZE THE TREE

PARAMETERS USED FOR TESTING CORNER DETECTORS

evaluated by computing the mean area under the repeatabilit

0.018 Al —— curve for the ‘box’, ‘maze’ and ‘bas-relief’ datasets. Sinc
- 0.016 Best - in each of the 27 points, 100 runs of the optimization are
£ 0014 | M\évc?igsr;[ """""""" performed, each of the 27 points produces a distribution of
g 0012 scores. The results of this are shown in Figure 7. The variati
-i 0.01 | in score with respect to the parameters is quite low evenginou
% 0.008 | the parameters all vary by a factor of four. Given that, the
S 0.006 | results for the set of parameters in Table | are very closkeo t
DEj 0.004 | results for the best tested set of parameters. This denatestr

0002 | that the choices given in Table | are reasonable.

800 1000 1200 1400 VI RESULTS

In this section, the FAST and FAST-ER detectors are
compared against a variety of other detectors both in tefms o
Fig. 7 repeatability and speed. In order to test the detectorbdyrt
DISTRIBUTION OF SCORES FOR VARIOUS PARAMETERS Ofiwr, wn, ws).  We have used the ‘Oxford’ dataset [100] in addition to our
THE PARAMETERS LEADING TO THE BEST RESULT ARE2.0, 3500,5000)  own. This dataset models the warp between images using a

Mean AUR score

AND THE PARAMETERS FOR THE WORST POINT ARKO.5, 3500, 5000). homography, and consists of eight sequences of six images
FOR COMPARISON THE DISTRIBUTION FOR ALL 27 RUNS AND THE each. It tests detector repeatability under viewpoint gean
MEDIAN POINT (GIVEN IN TABLE[I) ARE GIVEN. THE SCORE GIVEN Is THE  (for approximately planar scenes), lighting changes, bhat
MEAN VALUE OF A COMPUTED OVER THE'BOX’, * MAZE’ AND JPEG compression. Note that the FAST-ER detector is trained
‘BAS-RELIEF DATASETS. on 3 images (6 image pairs), and is tested on a total of 85

images (688 image pairs).
The parameters used in the various detectors are given
in Table[Il. In all cases (except SUSAN, which uses the
A. Parameters and justification reference implementation in [101]), non-maximal suppcess

The parameters used for training are given in Table 1. T performed using & x 3 mask. The number of features

entire optimization which consists of 100 repeats of a 100,0V3S controlled in a manner equivalent to thresholding on the
iteration optimization requires about 200 hours on a Pemtiyf ©SPONSE: For the Harris-Laplace detector, the Harrisoressp

4 at 3GHz. Finding the optimal set of parameters is ess@nti::l\(vaS used, and for the SUSAN detector, the ‘distance thrd_’shol
a high dimensional optimization problem, with many Iocarfarameter was used. It should be noted that some experimenta

optima. Furthermore, each evaluation of the cost function yon was performed on all the detectors to find the best result

very expensive. Therefore, the values are in no sense dptin%(‘ our dataset. In the case of FAST-ER, the best detector was

but they are a set of values which produce good results. Re%g}ecte‘d. The ’parameters we're.then used without m'odlfnna'tlo
n the ‘Oxford’ dataset. The timing results were obtainethwi

to [99] for techniques for choosing parameters of a simdlat® . . .
annealing based optimizer. Recall that the training sesists the same parameters used in the repeatability experiment.
of only the first three images from the ‘box’ dataset. 3

The weights determine the relative effects of good repeaty- Repeatability
bility, resistance to overfitting and corner density, aretéfore The repeatability is computed as the number of corners per
will affect the performance of the resulting corner detectoframe is varied. For comparison we also include a scattering
To demonstrate the sensitivity of the detector with respeat random points as a baseline measure, since in the limit
to w,, w, andw, a detector was learned for three differenif every pixel is detected as a corner, then the repeatglilit
values of eachw, € {0.5,1,2}, w, € {1750,5300,7000} 100%. To test robustness to image noise, increasing amofints
and ws € {5000, 10000, 20000}, resulting in a total of 27 Gaussian noise were added to the bas-relief dataset, icaddi
parameter combinations. The performance of the detecters # the significant amounts of camera noise already present.
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Additive noise

I N=10

4 N=12

N=15
| N=16

RS RRLE

Repeatability %
Repeatability %

‘ ‘ ‘ ‘ 5 10 15 20 25 30 35 40 45 50
0 500 1000 1500 2000 Noise standard deviation
Corners per frame Fig. 9

REPEATABILITY RESULTS FOR THE BASRELIEF DATA SET (AT 500
FEATURES PER FRAMEB AS THE AMOUNT OF GAUSSIAN NOISE ADDED TO
THE IMAGES IS VARIED. SEE FIGURE[10 FOR THE KEY.

Fig. 8
A COMPARISON OF THEFAST-n DETECTORS ON THE BAS-RELIEF
SHOWS THATn = 9 IS THE MOST REPEATABLE FORn < 8, THE
DETECTOR STARTS TO RESPOND STRONGLY TO EDGES

Detector A so the effect of noise will be reduced.
FAST-ER 13136 As the number of corners per frame is increased, all of the
FAST-9 1304.57 detectors, at some point, suffer from decreasing repdiyabi
20C PSP This effect is least d with the FAST-ER detect
Shi & Tomasi | 1219.08 is effect is least pronounced wi e - etector.
Harris 1195.2 Therefore, with FAST-ER, the corner density does not need to
Harris-Laplace| 1153.13 be as carefully chosen as with the other detectors. Thisfall
FAST-12 1121.53 : : ) : . .
SUSAN 1116.79 is particularly strong in the Harris and Shi-Tomasi detexto
Random 271.73 Shi and Tomasi, derive their result for better feature deiac
TABLE III on the assumption that the deformation of the features is
AREA UNDER REPEATABILITY CURVES FORO—2000CORNERS PER FRAME aﬁine-_ The?r detector performs slightly better over alldan
AVERAGED OVER ALL THE EVALUATION DATASETS (EXCEPT THE especially in the cases where the deformations are largely
ADDITIVE NOISE). affine. For instance, in the bas-relief dataset (Figure 10

assumption does not hold, and interestingly, the Harrisadet
outperforms Shi and Tomasi detector in this case. Both aiehe
detectors tend to outperform all others on repeatabilityéry
Aggregate results taken over all datasets are given in THble low corner densities (less than 100 corners per frame).
It can be seen from this that on average, FAST-ER outperformsThe Harris-Laplace is detector was originally evaluated
all the other tested detectors. using planar scenes [60], [102]. he results show that Harris
More detailed are shown in Figures 8, 10 and 11. As shovuaplace points outperform both DoG points and Harris points
in Figure[8 , FAST-9 performs best (FAST-8 and below ari@ repeatability. For the box dataset, our results verifgtth
edge detectors), so only FAST-9 and FAST-12 (the origintiis is correct for up to about 1000 points per frame (typical
FAST detector) are given. numbers, probably commonly used); the results are somewhat
The FAST-9 feature detector, despite being designed om®ps convincing in the other datasets, where points undergo
for speed, generally outperforms all but FAST-ER on thes®n-projective changes.
images. FASTs, however, is not very robust to the presence In the sample implementation of SIFT [103], approximately
of noise. This is to be expected. High speed is achieved b900 points are generated on the images from the test sets.
analysing the fewest pixels possible, so the detectorbtyabi We concur that this a good choice for the number of features
to average out noise is reduced. since this appears to be roughly where the repeatabilityecur
The best repeatability results are achieved by FAST-ERr DoG features starts to flatten off.
FAST-ER easily outperforms FAST-9 in all but Figures 10A, Smith and Brady [76] claim that the SUSAN corner detector
[11B, C and E. These results are slightly more mixed, bperforms well in the presence of noise since it does not
FAST-ER still performs very well for higer corner densitiescompute image derivatives and hence does not amplify noise.
FAST-ER greatly outperforms FAST-9 on the noise test, (atle support this claim. Although the noise results show that
outperforms all other detectors fer< 7). This is because the the performance drops quite rapidly with increasing noise
training parameters bias the detector towards detecting mto start with, it soon levels off and outperforms all but the
corners for a given threshold than FAST-9. Consequently, fDoG detector. The DoG detector is remarkably robust to the
a given number of features per frame, the threshold is highpresence of noise. Convolution is linear, so the computaifo
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A: Box dataset B: Maze dataset
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Fig. 10

A, B, C: REPEATABILITY RESULTS FOR THE REPEATABILITY DATASET AS THE NUMBER OF FEATURES PER FRAME IS VARIEDD: KEY FOR THIS FIGURE
FIGURE/11 AND FIGURE[9. FOR FAST AND SUSAN, THE NUMBER OF FEATURES CAN NOT BE CHOSEN ARBITRARILYTHE CLOSEST APPROXIMATION
TO 500 FEATURES IN EACH FRAME IS USED

DoG is equivalent to convolution with a DoG kernel. Sincesthi As can be seen in Talle IV, FAST in general is much faster
kernel is symmetric, the convolution is equivalent to matth than the other tested feature detectors, and the learne@ BAS
filtering for objects with that shape. The robustness iseaed roughly twice as fast as the handwritten version. In addjtib
because matched filtering is optimal in the presence ofiadditis also able to generate an efficient detector for FAST-9¢ckwhi

Gaussian noise [104]. is the most reliable of the FASH-detectors. Furthermore, it is
able to generate a very efficient detector for FAST-ER. Oespi
B. Speed the increased complexity of this detector, it is still muektér

. ) than all but FASTs. On modern hardware, FAST and FAST-
Timing tests were performed on a 3.0GHz Pentium 4-Bp ¢,nsume only a fraction of the time available during video

v.vhi'ch is representative of a modern desktop computer. TBF‘ocessing, and on low power hardware, it is the only one of
timing tests are performed on two datasets: the terst seth@nd, qetectors tested which is capable of video rate prawgssi

training set. The training set consists 101 monochromesfielg;

from a high definition video source with a resolution99R x

668 pixels. This video source is used to train the high speed

FAST detectors and for profile-guided optimizations fortaé VII. CONCLUSIONS

detectors. The test set consists of 4968 frames of mono&romIn this paper, we have presented the FAST family of

352 x 288 (quarter-PAL) video detectors. Using machine learning we turned the simple and
The learned FAST-ER, FAST-9 and FAST-12 detectors havery repeatable segment test heuristic into the FAST-Sctimte

been compared to the original FAST-12 detector, to our implehich has unmatched processing speed. Despite the design

mentation of the Harris and DoG (the detector used by SIFfOr speed, the resulting detector has excellent repedyabil

and to the reference implementation of SUSAN [101]. ThBy generalizing the detector and removing preconceivedside

FAST-9, Harris and DoG detectors use the SSE-2 vectoriziagout how a corner should appear, we were able to optimize

instructions to speed up the processing. The learned FRSTd detector directly to improve its repeatability, creatitig

does not, since using SSE-2 does not yield a speed increas&ST-ER detector. While still being very efficient, FAST-
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A-G: REPEATABILITY RESULTS FOR THE'‘OXFORD’ DATASET AS THE NUMBER OF FEATURES PER FRAME IS VARIEDSEE FIGURE/10 FOR THE KEY.
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Detector Training set Test set
Pixel rate (MPix/s) % | MPix/s %
FASTn =9 188 490 179 5.15
FAST n = 12 158 5.88| 154 5.98
Original FAST (v = 12) 79.0 11.7| 82.2 11.2
FAST-ER 75.4 12.2| 67.5 13.7
SUSAN 12.3 74.7| 13.6 67.9
Harris 8.05 115 | 7.90 117
Shi-Tomasi 6.50 142 6.50 142
DoG 4,72 195| 5.10 179
TABLE IV

TIMING RESULTS FOR A SELECTION OF FEATURE DETECTORS RUN ON
FRAMES OF TWO VIDEO SEQUENCESTHE PERCENTAGE OF THE
PROCESSING BUDGET FOR40 x 480 VIDEO IS GIVEN FOR COMPARISON
NOTE THAT SINCEPAL, NTSC, DVAND 30Hz VGA (COMMON FOR
WEB-CAMS) VIDEO HAVE APPROXIMATELY THE SAME PIXEL RATE, THE
PERCENTAGES ARE WIDELY APPLICABLE THE FEATURE DENSITY IS
EQUIVALENT TO APPROXIMATELY 500 FEATURES PERG40 X 480 FRAME.
THE RESULTS SHOWN INCLUDE THE TIME TAKEN FOR NONMAXIMAL

SUPPRESSION
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H. Ogawa, “Corner detection on digital curves based @algymmetry
of the shape,Pattern Recognitionvol. 22, no. 4, pp. 351-357, 1989.

[9] A. Bandera, C. Urdiales, F. Arrebola, and E. Sandovabrf@r detec-

(10]

[11]

(12]

(23]

[14]

(18]

[16]

(17]

ER has dramatic improvements in repeatability over FAST-18]
(especially in noisy images). The result is a detector wisch
not only computationally efficient, but has better repeititgb

results and more consistent with variation in corner dgnsit

than any other tested detector.

These results raise an interesting point about corner det

(19]

[20]

ec

tion techniques: too much reliance on intuition can be mis-
leading. Here, rather than concentrating on how the alyorit [21]
should do its job, we focus our attention on what performance
measure we want to optimize and this yields very good resultg2]
The result is a detector which compares favourably to egsti

detectors.
In the interests of science, we will be making all
of the experiment freely available as supplemental materia

(23]
arts

including the datasets, the FAST-ER learning code and tHE"
resulting trees.

(1]
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