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Abstract In this paper we present a simple and robust method
for self-correction of camera distortion using single images
of scenes which contain straight lines. Since the most com-
mon distortion can be modelled as radial distortion, we il-
lustrate the method using the Harris radial distortion model,
but the method is applicable to any distortion model. The
method is based on transforming the edgels of the distorted
image to a 1-D angular Hough space, and optimizing the dis-
tortion correction parameters which minimize the entropy
of the corresponding normalized histogram. Properly cor-
rected imagery will have fewer curved lines, and therefore
less spread in Hough space. Since the method does not rely
on any image structure beyond the existence of edgels shar-
ing some common orientations and does not use edge fitting,
it is applicable to a wide variety of image types. For instance,
it can be applied equally well to images of texture with weak
but dominant orientations, or images with strong vanishing
points. Finally, the method is performed on both synthetic
and real data revealing that it is particularly robust to noise.
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1 Introduction

1.1 Camera Calibration and Distortion Correction

Camera calibration addresses the problem of finding the pa-
rameters necessary to describe the mapping between 3-D
world coordinates and 2-D image coordinates. This can be
divided into the determination of extrinsic and intrinsic pa-
rameters. The extrinsic parameters are necessary to relate
an arbitrary 3-D world coordinate system to the internal 3-
D camera coordinate system, where the z-axis is typically
taken to be along the optical axis. The intrinsic parameters
are independent of the camera position, and typically in-
clude a focal length, an offset relating pixel coordinates cen-
ter to the optical center, a scale factor describing the pixel
aspect ratio, and one or more parameters describing non-
linear radial and tangential distortions. Detailed examples
of this process can be found in [13,16], among others.

In this work we address the determination of the non-
linear distortion parameters, with the assumption that the
other intrinsic parameters, usually addressed assuming a pin-
hole camera model, can be found after the initial non-linear
distortion correction. In order to do this a model must be
selected, as well as a method of estimating the model pa-
rameters.

1.2 Summary of Related Work

1.2.1 Distortion Correction Models

A general equation for distortion correction is given by

I1(x′) = I0(x), x′ ≡ D(x), (1)

where I1 is the output (corrected) image, I0 is the input (dis-
torted) image, and x is a pixel location in the input image
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that is mapped to location x′ in the output image by distor-
tion correction function D(x) : R2 ⇒ R2.

If the distortion is assumed to be isotropic, and strictly
radial, then D(x) can be written as

D(x) = f (ρ)r̂+ c, (2)

where c is the center or radial distortion, the radius vector
r = [r1 r2]T = x− c, the radius ρ = ‖r‖, the normalized ra-
dius vector r̂ = r/ρ and f is a scalar function of ρ .

Several models for distortion correction have been used
previously. In terms of f , the models include the polynomial
model [13,2], where

f (ρ) = ρ(1+ k1ρ
2 + k2ρ

4 + k3ρ
6 + ...), (3)

and the Harris model [27], where

f (ρ) =
ρ√

1+ γρ2
. (4)

More complex models such as [14] include additional
tangential distortion

D(x) =
[

p1(ρ2 +2r2
1)+2p2r1r2

2p1r1r2 + p2(ρ2 +2r2
2)

]
+ f (ρ)r̂+ c, (5)

to account for decentering of the optical system (where p1
and p2 are the parameters). More recently the rational func-
tion model, where polynomial and perspective transforms
are combined into a rational polynomial [5,19] has been pro-
posed.

All of these models can have adequate performance de-
pending on the characteristics of the camera optics. In the
following we limit our discussion and implementation to
a single model in order to bound the scope of the paper,
though it should be noted that the method we present is ex-
tensible to any model. The Harris model is chosen for its
reasonable performance, single parameter, and ease of in-
version (achieved by simply negating γ).

1.2.2 Parameter Estimation Methods

A variety of methods exist for estimating camera distortion
correction model parameters. Earlier efforts relied on im-
agery with artificially created structure, either in the form of
a test-field, populated with objects having known 3-D world
coordinates, or using square calibration grids with lines at
constant intervals [13,16,2]. Alternative approaches do not
require artificially created structure, but used multiple views
of the same scene. The calibration technique makes use of
constraints due to known camera motion (for instance rota-
tion) [23], known scene geometry such as planar scenes [21]
or general motion and geometry constrained with the epipo-
lar constraint [24,1,5].

These approaches required access to the camera in or-
der to perform a specific operation, such as acquiring views

from multiple positions or views of a particular scene. This
is problematic in instances where access is no longer avail-
able to the camera, but only to the resulting imagery.

As a result, a number of methods have been developed
which can operate on single views but which make use of
common structure in images such as vanishing points [3],
higher-order correlations in the frequency domain [11] and
straight lines [4].

The methods relying on the existence of straight lines,
the “plumb-line” methods, were pioneered by Brown [4].
Brown used a test-field with actual strung plumb-lines, but
in general these methods do not require knowledge of the
locations of the lines. In particular, white plumb-lines were
strung across a black background, with the plumb-bobs im-
mersed in oil for stability. The photographic plate was ex-
posed twice with the camera rotated about the optic axis by
90◦, giving a nominally square grid of lines. A number of
points along the lines recorded on the photographic plate
were measured using a microscope (a Mann comparator).
Calibration was then performed by minimizing the least-
squares error in the image between distorted straight lines
and the measures points on the photographed plumb-lines.

Plumb-line methods are applicable to many image types,
because nearly all scenes containing man-made structures
have a large number of straight lines. Plumb-line methods
generally rely on the process of optimizing the distortion
correction parameters to make lines that are curved by ra-
dial distortion straight in the corrected imagery. The lines
can be manually selected, as in [26], or they can be found
automatically, as in [7,25,6] by detecting edgels and linking
them in to line segments.

The objective function for optimization can be formu-
lating by undistorting the line segments and measuring the
straightness by fitting a straight line [26,7]. Alternatively,
the distortion model can be chosen so that straight lines be-
come specific family of curves, such as conics [6] or cir-
cles [25]. The distortion can then be found by fitting these
curves to the distorted line segments.

2 Algorithm Overview

We propose a method that is simple and robust to high levels
of noise, as shown in the results section. In our algorithm we
calculate all image edgels, and then transform these into a
one-dimensional Hough space representation of angle. This
creates an orientation histogram of the edgel angles. In this
form, curved lines will be represented at a variety of angles,
while straight lines will be found only at one. Therefore, we
optimize the model distortion parameters which minimize
the entropy (or spread) of the Hough space angular repre-
sentation. The individual steps are:

1. Find salient image edgels, with normal vectors.



3

(a) (b) (c)

Fig. 1 Salient edge detection using tensor voting. (a) The original im-
age, (b) the gradient magnitude, (c) the edge saliency.

2. Perform a distortion correcting transformation to the edgels.
3. Compute the 1-D angular Hough transform.
4. Compute an objective function defined as the spread (en-

tropy) of the 1-D Hough transform.
5. Optimize the transformation parameters to minimize the

entropy/spread based objective function, iterating steps
2–4,

6. Use the optimized transform parameters to map the input
image to a corrected output image.

Note that step 1, finding the edgels, is only required
once, due to the fact that the edgels, rather than the underly-
ing image, can be transformed. This, and the other steps of
the process, are described in further detail in the following
respectively enumerated subsections.

2.1 Salient edge extraction

The structure that we are making use of in this paper con-
sists of long, straight edges, which appear as long, smoothly
curved edges in the input image.

Simply performing an edge detection does not result in
these features being dominant, so to enhance the long edges,
we use tensor voting [15] on the dense gradient image. The
gradient is produced by finite differences, and voting is made
in proportion to the gradient magnitude. We use the stan-
dard kernel for smooth, circular curves, specifically the ker-
nel given by the equations on page 60 of [15].

For edges, each pixel is represented by a 2× 2 positive
semi-definite matrix with eigenvalues λ1 and λ2. We wish to
find points which are sufficiently ‘edgey’ so we use the edge
saliency function φ , given by:

φ = maxλ1,λ2− eminλ1,λ2. (6)

This detects points where the edge in the main orientation is
significantly brighter than other edges. We have found that
e = 2 produces good results. An example of these are shown
in Figure 1. The normal of these edgels is given by the eigen-
vector corresponding to the largest eigenvalue.

The final stage is to discard the non-salient edges by
thresholding at φ = 0. For computational efficiency of the
later stages, the set of edges passing the threshold is subsam-
pled. Typically, we keep 100,000 edgels. In order to prevent
the result being dominated by one region with strong edges,

we split the image up in to a regular grid, and perform sub-
sampling independently within each grid cell, so that each
cell contains the same number of edgels.

2.2 Distortion correction model

2.2.1 Anisotropic extension

As mentioned previously, for the basic radial distortion cor-
rection model, we have based our distortion correction model
on the Harris model defined in Equation 4. In order to extend
the model’s flexibility, we add an anisotropic component, so
that the model becomes:

D(x) = r̂ f (ρ)(1+g(θ))+ c, (7)

where f (.) and g(.) are the distortion functions.
In particular, we define the anisotropy function, g(θ) to

be:

g(θ) = a1 sin(θ +ψ1)+a2 sin2(θ +ψ2)+ . . .

= b1 sinθ +b2 cosθ +(b3 sinθ +b4 cosθ)2 + . . . , (8)

which can be rearranged as a Fourier series. This formula-
tion conveniently avoids the use of trigonometric functions,
since cosθ = r̂1 and sinθ = r̂2, where r̂ = [r̂1 r̂2]T.

2.2.2 Edgel transformation

In order to evaluate the cost function it is necessary to de-
termine the edgels’ orientation, as discussed in the previous
section. If it were necessary to regenerate these by comput-
ing a completely new image for each new set of distortion
model parameters, however, the optimization process (in-
volving numerous evaluations of different sets of model pa-
rameters) would be prohibitively slow. Furthermore, errors
due to resampling would be introduced when the image was
undistorted at each iteration.

Fortunately, the edgels need to be determined only once,
from the input image, due to the fact that the distortion cor-
recting transformations can be applied directly to the edgels,
provided that the Jacobians of the transformations are known.
In order to see this, consider an edgel in the input image as
part of a parameterised curve l(t) in R2. The distortion cor-
rection transformation, D, can be applied to this space to
create a new line:

m(t) = D(l(t)). (9)

The line tangents are then found by differentiating to be:[
∂m1
∂ t

∂m2
∂ t

]
= J

[
∂ l1
∂ t
∂ l2
∂ t

]
, (10)
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Fig. 2 Images of curved and straight line images and the correspond-
ing 1-D Hough transforms.

where the Jacobian, J, is given by:

J =

[
∂D1
∂ ll

∂D1
∂ l2

∂D2
∂ ll

∂D2
∂ l2

]
. (11)

The edgels include normals n defined at discrete points. The
transformed edgel normals, h, can then be found using:

h =
[

0 1
−1 0

]
J
[

0 −1
1 0

]
n (12)

Note that we do not parameterise the line with a func-
tion. The line and its normal is known (and used) only at a
discrete set of points, specifically where the edgels are de-
tected. This means that l(t) and n(t) can be evaluated at ev-
ery value of t we require. Since the edgel detection process
also provides the normals, J is only a function of the distor-
tion model, and is therefore computed analytically from the
definition of D. The derivation of J for the Harris model is
given in Appendix A.

2.3 1-D Angular Hough transform

The Hough transform is a technique for finding lines in im-
ages [9]. It is sufficiently well-known so that only a trun-
cated explanation will be given here. The basis of the tech-
nique is the transform of a line to a point in “Hough” space.

By way of example, if a line is defined by y = mx + b,
then it can be represented by a single point in a 2-D Hough
space of [m]× [b]. An edgel, which contains both a normal
vector (and thus the slope of a line) and a discrete point
(which a corresponding line would pass through), can also
be mapped to a single point in Hough space. In practice the
mx+b formulation is unwieldy, so

ρ = xcosθ + ysinθ (13)

is used, where ρ is the shortest distance from the line to the
origin, and θ is defined by the vector normal to the line.

The Hough space can be quantized into discrete bins,
and each edgel can be assigned to a particular bin. Given a
set of edgels, support for the existence of a particular line
is then indicated by the accumulation of a large number of
edgels in the corresponding bin. The edgels from a curve
end up in adjacent bins, resulting in a diffuse cluster of non-
zero bins, while edgels that are all on the same line end up
in exactly the same bin. This important fact motivates the
definition of our objective function, as explained in the next
section.

In general we anticipate the presence of a number of
parallel lines in the scene, and would like to utilize their
reinforcement of each other. We therefore marginalize the
[ρ]× [θ ] Hough space into a 1-D θ space by summing over
the ρ values for each θ . An example of some images with
curved lines and straight lines, and their corresponding 1-D
Hough transforms, are shown in Fig. 2. Note that the two
principal line directions are mapped to two corresponding
peaks in Hough space.

2.4 Entropy-based objective function

The radial distortion correction method presented here is
motivated by the observation that curved lines map to spread
out peaks in Hough space, while straight lines map to a sin-
gle bin. Therefore, it is desirable to have an objective func-
tion that measures this spread. In information theory this
quality is represented by entropy [22]. We have therefore
normalized the 1-D Hough representation, and treat it as a
probability distribution. The objective function is then:

C(H)≡−
B

∑
b=1

p(Hb)log2(p(Hb)), (14)

where H is the discretized 1-D angular Hough transform of
the edgels of an input image for a given set of model pa-
rameters, p(Hb) is the value of a given normalized Hough
bin, and B is the number of bins. Minimizing C therefore
minimizes the spread.

2.5 Optimization

The cost function has many local minima, so to optimize
it effectively a reasonable strategy is needed. As a broad
overview, we have found that the MCDH (Monte-Carlo down-
hill) strategy works best. Essentially, starting parameters are
selected at random, and the downhill simplex algorithm [17]
(specificially the variation given in [18]) is used to optimize
the cost from the selected starting points. The best result
is then selected. The downhill simplex algorithm is iterated
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until the residual drops below a threshold (10−15), or 1000
iterations occur, whichever is sooner. The residual is com-
puted as:

r =
‖sbest− sworst‖2

‖sbest‖2
,

where sbest is the location of the best (smallest) point on the
simplex, and sworst is the location of the worst (largest point)
on the simplex.

In order to implement this method effectively, several
techniques are needed. Parameters computed in the Hough
transform will not lie exactly at the bin centres. If the param-
eter is simply placed in the closest bin, then the quantization
caused by this causes flat areas to exist in the cost function.
The flat areas can easily confound the optimizer, so instead,
the neighbouring bins are incremented using linear interpo-
lation.

The optimizer is most effective when the parameters be-
ing optimized have similar orders of magnitude, since other-
wise roundoff error will cause errors in the computation of
new simplexes. In this case, a simple scale based on a priori
knowledge of approximate parameter values suffices.

For radial distortion, c is roughly in the middle of an
image and is of the order 102 to 104 pixels. Given Equa-
tion 4, it is reasonable to expect γ to be approximately in the
range ±ρ−2

max, where ρmax ≈ |c̃| and c̃ is the centre of the im-
age. Therefore, in the optimization, we solve for β , where
β = 100γρ2

max, which brings β in to the same range as c.
Similarly, we have found that the values of the anisotropic

coefficients, b1, . . . are of order 10−3, so we instead solve
for di, where di = 105bi. The resulting optimization is per-
formed over the vector:

[c1,c2,β ,d1,d2,d3,d4,d5,d6]. (15)

The random selection of the starting parameters must be
based around some knowledge of the values. The centre of
radial distortion is usually near to the centre of the image, so
we draw the initial centres from a normal distribution cen-
tred at c̃ with a standard deviation of |c̃|

20 . Given the approxi-
mate values of γ , and therefore β , we draw initial values of
β from N (0,100). The initial anisotropy parameters are set
to zero. For our application and these parameters, we have
found that 120 MCDH iterations is sufficient.

2.6 Generating the output image

In order to generate the output (corrected) image the follow-
ing procedure is needed:

1. For each point, x′, in a grid defined on the output image
I1, find the corresponding point in the distorted input im-
age I0 given by D−1(x′).
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Fig. 3 (Left) Illustration of the simulated data (shown with 100 points
per line). (Right) Performance of the algorithm on the simulated data,
with γ = 10−5 and γ = 2×10−5. The median value of gamma is shown
with error bars at the 10th and 90th percentile.

2. Copy the pixel back, performing the assignment:

I1(x′) := I0(D−1(x′)).

Since images are discrete, interpolation will be required
to find I1(D−1(x′)). Bicubic interpolation has been used to
generate the results shown in the following section.

3 Results

3.1 Synthetic tests

In order to compute the sensitivity to various kinds of noise,
we create a number of synthetic images, using known radial
distortion levels, and compute the resulting radial distortion
correction parameters using our technique. We investigate
the two correction models, namely the strictly radial cor-
rection of the unmodified Harris model, and the anisotropic
extension discussed previously. The images are designed to
test the performance of the algorithm in the presence of mea-
surement error in the plumb-lines, and both uncorrelated and
correlated non-plumb-line data.

The 250× 250 pixel test images consist of five good
quality lines (no point can be within 60 pixels of the centre
of the image), consisting of 10 points on each line, drawn
with barrel distortion and with random orientation errors.
Then (in the case of uncorrelated noise), a number of ran-
domly placed, randomly oriented points are added. In the
case of correlated noise, a number of randomly placed, sized
and oriented ellipses (with the same approximate point spac-
ing as the lines) are added. Our algorithm is then applied to
the test image to estimate the parameters.
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For every selected noise proportion for the simulation,
200 test images are created for each of two different values
of γ . The results of these, and an illustration of the simulated
data is shown in Figure 3. As can be seen, the technique is
very robust to noise, producing good results with up to 70%
contamination and interestingly it does not perform much
worse in the case of correlated noise. Furthermore, although
the anisotropic extension (in this case) introduces six extra
parameters to the optimization, this has no significant effect
on the stability of the technique in high noise situations.

3.2 Example images

The results on two real images are shown in Figure 4. In the
corrected images, real-world straight lines have been anno-
tated with lines to show that there is no significant amount
of curvature. The upper image shows the technique operat-
ing on an image where the lines belong to vanishing points
(note that some distortion was artificially added to this im-
age in addition to the camera distortion present). Note the
presence of strong curved edges along the boundaries of the
cars and parts of the building.

The lower image shows the results on an aerial image
of a city. Although there are two principal directions in this
image, the contrast on the principal edges is low compared
to many of the other features. Additionally, the anisotropy
extension was required to correct the very strong distortion
in the lower left corner.

3.3 Comparison to other techniques

To gauge the accuracy of our method, we have compared it
to a technique based on structured scenes. In particular we
have used the technique of [10], which uses multiple images
of a planar grid of squares to determine the intrinsic and
extrinsic camera calibration parameters. This system is able
to calibrate cubic, quintic, Harris and Harris with unit aspect
ratio camera models. We use the last listed model, since this
matches the camera model in the paper. In particular, we use
this program to optimize the model:[

xi
yi

]
=

[
u
v

]
+

[
f 0
0 f

][
xc
yc

]
1√

1+α(x2
c + y2

c)
, (16)

where (u,v) is the optic axis, (xi,yi) is a coordinate in the
image, and (xc,yc) is a coordinate in ideal, normalized cam-
era’s image plane. Since the technique is a structured scene
technique, it also estimates the focal length of the camera,
f . To translate from one model to the other, set γ = α

f 2 . Note
that this assumes that the centre of radial distortion is at the
optic axis of the camera, which is a reasonable assumption.

In order to measure the quality of the camera calibra-
tion, we localise a known 3D model in an image, and mea-
sure the root mean square (RMS) error between the control
points on the model and the measured points in the image.
The model consists of 13 by 9 black and white squares in a
chequerboard pattern on a flat plane. The model is warped
using a homography (the parameters of which must be de-
termined), then by the calibrated radial distortion function
and rendered in to the image. We then search normal to the
rendered edges, looking for edges in the image. We define
the error to be the distance offset in pixels between the ren-
dered model edge and the measured edge position in the im-
age The parameters of the homography are then adjusted
using the downhill-simplex algorithm to minimize the RMS
error. In particular, we search 15 pixels in either direction,
and take the point with the highest gradient, measured us-
ing the kernel [−1 −2 −1 0 1 2 1]. If the highest gradient
does not exceed some threshold, or is not a local maxima,
then the edge search is discarded and does not contribute to
the RMS error. Quadratic interpolation is then used to find
the edge position to subpixel accuracy. The search distance
is sufficiently small that data association is trivial, and ro-
bust fitting is not required. A more detailed treatment of very
closely related systems for aligning models is given in [12,
8].

The results of this test are shown in Figure 5. As ex-
pected, the technique which uses many (in this case approxi-
mately 100) images of a structured scene performs best. The
performance of our method varies somewhat with the con-
tents of the scene, but performs well on certain images. One
interesting property of our technique is well illustrated. The
property is that edgels from multiple, unrelated images can
be aggregated to provide more straight edges. In the case
shown, the resulting calibration is superior to the calibra-
tion generated from a single image of a carefully constructed
grid.

4 Discussion and conclusions

In this paper, we have presented a new, simple and robust
method for determining the radial distortion of an image us-
ing the plumb-line constraint. The technique works by first
extracting salient edgels and then minimizing the spread of
a 1D angular Hough transform of these edgels. The tech-
nique is simple and because no edge fitting is performed, the
technique is very robust to the presence of noise. Further-
more, the technique is more generally applicable than other
plumb-line techniques in that the lines used do not need to
be continuous. The technique works on textures with prin-
cipal directions, as illustrated by the aerial image of a city,
where the salient edge detection results in a large number of
relatively small edge fragments.
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Fig. 4 (Left) Original, distorted images. (Right) Images undistorted using our technique. Some lines which are straight in the world have been
annotated with straight lines in the undistorted image. The images are of a building, showing strong vanishing points and an aerial image of a city.

The proposed algorithm has a number of parameters: the
parameters of the tensor voting kernel, the number of bins
and the parameters of the optimization. In practice, the se-
lection of these parameters are not critical, and indeed the
same set of parameters was used for the simulated data, the
example images and the test images shown.

Our method is flexible in that it does not impose con-
straints beyond the presence of one or more straight edges:
it is not a requirement that the edges share vanishing points,
or structure of any particular kind. It is not even a require-
ment that the edgels belong to a related set of images. The
technique can be equally applied to edgels from multiple
images of unrelated scenes taken with the same camera pa-
rameters. Finally, our method is widely applicable because
it is, in terms of RMS error, able to produce a calibration
to within three percentage points of a technique requiring
access to the camera and structured scenes.
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A Derivation of J for the Harris model

Taking r̂ to be a column vector (i.e. r̂ =
[

r̂1
r̂2

]
):

J =
∂D
∂x

=
∂ r̂
∂x

f (ρ)(1+g(θ))+ r̂(1+g(θ))
∂ f (ρ)

∂ρ

∂ρ

∂x

+ r̂ f (ρ)
∂g(θ(x))

∂x
(17)

Where:

∂ r̂
∂x

=

[
∂ r̂1
∂x1

∂ r̂1
∂x2

∂ r̂2
∂x1

∂ r̂2
∂x2

]
=

1
ρ3

[
r̂2

2 −r̂2 r̂2
−r̂2 r̂2 r̂2

1

]
, (18)

∂ f (ρ)
∂ρ

= (1+ γρ
2)−

3
2 , (19)

∂ρ

∂x
=

[
∂ρ

∂x1

∂ρ

∂x2

]
=

[
r̂1 r̂2

]
, (20)

and:

∂g
∂x

=
[

∂g
∂x1

∂ρ

∂x2

]
(21)

The function g(θ) is a function of sinθ and cosθ , where:

cosθ = r1/ρ = r̂1,and (22)

sinθ = r2/ρ = r̂2, (23)

we can rewrite g(θ(x)) as:

g(r̂) = b1 r̂2 +b2 r̂1 +(b3 r̂2 +b4 r̂1)2 +(b5 r̂2 +b6 r̂1)3, (24)

so,

∂g
∂x

=
∂g(r̂)

∂ r̂
∂ r̂
∂x

=
[

∂g(r̂)
∂ r̂1

∂g(r̂)
∂ r̂2

]
∂ r̂
∂x

(25)

where:

∂g(r̂)
∂ r̂1

= b1 +2b3(b3 r̂1 +b4 r̂2)+3b5(b5 r̂1 +b6 r̂2)2 (26)

∂g(r̂)
∂ r̂2

= b2 +2b4(b3 r̂1 +b4 r̂2)+3b6(b5 r̂1 +b6 r̂2)2. (27)

Substituting Equations 18, 19, 20, 25, 26 and 27 in to Equation 17 gives
the analytic solution for the J.
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