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Abstract. As the study of complex systems has become dominant in
physics the link between computational and physical science has become
ever more important. In particular, with the rising popularity of imag-
ing techniques in physis, the development and application of cutting edge
computer vision techniques has become vital. Here we present novel im-
age analysis methods which can be used to extract the position of features
in diffraction patterns (reciprocal space) with unprecedented accuracy.

The first contribution we have developed is a method for calculating
the nonlinear response of photographic film by using the noise in the im-
age enabling the extraction of accurate intensity information. This allows
high-resolution (but non-linear) film to be used in place of low-resolution
(but linear) CCD cameras. The second contribution is a method for ac-
curately localising very faint features in diffraction patterns by modelling
the features and using the expectation maximization algorithm directly
on the image to fit them. The accuracy of this technique has been verified
by testing it on synthetic data.

These methods have been applied to transmission electron microscopy
data, and have already enabled discoveries which would have been im-
possible using previously available techniques.

1 Introduction: TEM and the importance of image
analysis

Over the last twenty years the ability to image materials with electrons, which
have a wavelength considerably smaller than light, has revolutionised the phys-
ical sciences. However, generating meaningful data from the images obtained
often requires automated image analysis. A number of programs have been cre-
ated which perform basic operations well, but when dealing with diffraction
patterns (reciprocal space) and with situations where accuracy and statistical
significance are critical these are not adequate. Here we present methods for
extracting extremely accurate and statistically significant data from diffraction
patterns.

The diffraction patterns shown here were obtained using transmission elec-
tron microscopy (TEM), an important technique in both academia and industry.
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Fig. 1. A diffraction pattern taken from La0.5Ca0.5MnO3. The parent lattice reflections
are caused by the cubic parent lattice. The superstructure reflections are caused by the
additional ordering which occurs at ∼ 220K [2], and occur along the primary axis
(labelled a∗). The cutout has been enhanced to make the weak reflections more visible,
since they are present as very faint spots. The superlattice reflections centred at ∗ and
+ are shown in the other highlighted area of the diffraction pattern. The positions are
found using the method described in Section 4.

In a transmission electron microscope [1] a beam of electrons accelerated through
a high voltage passes through a thin (< 200 nm) area of a sample. The beam
then passes through a series of magnets which act as lenses. By adjusting the
strength of these magnets either an image of the sample (real space informa-
tion) or a diffraction pattern (reciprocal space information) can be observed,
and recorded using photographic film or a CCD (depending on the microscope).
Thus both images and diffraction patterns can be obtained from the same area
of the sample. The most advanced TEMs can perform imaging almost at the
atomic scale.

A diffraction pattern is essentially a power spectral density of an affine pro-
jection of the crystal lattice (the array of repeating units, or unit cells, which
comprise the crystal), with some additional effects arising from dynamical (in-
elastic) diffraction, which can be ignored here. The main crystal lattice (the
parent lattice) gives rise to a regular grid of spots termed parent lattice reflec-
tions. In the case of a typical pseudo-cubic parent lattice (see Figure 1), the
grid is described by the two wavevectors a∗ and c∗. A wavevector is simply a
vector defined in reciprocal space. Some materials have a repeating superstruc-
ture with a period greater than the unit cell size superimposed on the parent
lattice. In reciprocal space this gives rise to reflections at wavevectors smaller
than the unit cell (superlattice reflections). In many strongly correlated systems
a one-dimensional electronic superstructure forms at low temperatures. Pairs
of superlattice reflections appear along one axis in the diffraction pattern. The
position of the superlattice reflections is given by a wave vector whose magni-
tude is denoted q (with units m−1), though it is often given in units of a∗. The
relative intensity of the superlattice and parent lattice reflections varies widely
depending on the type of sample, and in some experiments the superlattice re-
flections can be extremely faint as demonstrated by the diffraction pattern for
an La0.5Ca0.5MnO3 thin film shown in Figure 1.



Although a great deal of effort and expertise has gone into designing packages
for the analysis of certain kinds of TEM images (e.g. SEMPER [3], Digital Micro-
graph), analysis of diffraction patterns has typically been performed by hand,
which is time consuming and inaccurate. In Section 2 we present a technique
for finding the nonlinear response of photographic film, which allows analysis
techniques which require a linear response to be used. In Section 4, we present a
system which not only allows individual measurements of superlattice reflections
to be made with high, and quantifiable, accuracy, but can measure the position
of every reflection in a diffraction pattern. This allows results to be measured
to a high level of statistical significance, and makes it feasible to obtain data
from patterns which would previously have been abandoned as unusable. These
techniques have been applied to previously unsolvable problems and the results
are presented in Section 5.

2 Nonlinear film response correction

CCD image sensors have a linear response with electron intensity which allows
the intensity of the image to be accurately measured. However, the use of pho-
tographic film has two advantages relative to using a CCD: firstly the resolution
of scanned film is high (typically ∼ 4000 × 4000 pixels, compared to 512 × 512
for common TEM CCD sensors); secondly, the physical robustness of the film
allows much longer exposure times (excessive illumination of a CCD with elec-
trons causes damage). This heavily saturating the brighter reflections, allowing
the faint ones to be visible. However, in order to interpret intensity information
from photographic film correctly it is necessary to process the image, so that the
image intensity is proportional to electron intensity.

Manufacturers provide calibration curves for the film, but they are only accu-
rate if development conditions are identical. This is unlikely to be the case since
the strength of the developing solutions changes over time as they are used or
replaced. Instead, we present a method where the film response can be deduced
from the image noise, individually for each image.

Noise in the electron intensity is approximately constant over the image, and
is caused by random scattering of the diffracted electrons (the diffraction pat-
terns are typically not scanned at a resolution where film grains are visible, and
the level of shot noise is negligable, since the exposure time is long). Therefore, at
a given film intensity, fi, the amount of image noise, η, is related to the electron
intensity ei:

η ≈ d fi

d ei
, (1)

since d fi

d ei
is the film sensitivity and the electron intensity can be arbitrarily set

so that the noise variance is unity. We use this relationship to find the response
of the film. To do this, we first smooth the image, to remove noise and then find
the difference between the smoothed image (f̂i) and the unsmoothed image (fi)
at every pixel (the difference being due to noise). The measurements are binned
by image intensity, and the amount of noise is measured by taking the standard
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Fig. 2. Plot of noise intensity against image intensity, taken from a typical diffraction
pattern.

deviation of the measurements in each bin. Linear smoothing techniques such
as convolving with a Gaussian kernel are unsuitable because they cause features
to spread out. Instead, we fit polynomials of order r to groups of n consecutive
pixels along every scanline to smooth the image. The values of n and r depend
loosely on the feature size.
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Fig. 3. (a) Film response measured with r in the range 3 . . . 10 (in steps of 1) and n in
the range 3r . . . 50 (in steps of 10). (b): Noise distributions for the film responses. (c)
A diffraction pattern before and after correction with the film response curve, using
r = 5 and n = 15.

Having measured η for all image intensities, we now have an approximate
measure of the differential of the film response, which is shown in Figure 2.
Note however the increase in noise for very small pixel values. This is an artifact
caused by the the image being clipped at an intensity of zero, which is not taken
in to account by the polynomial fitting (even though after fitting, the polynomial
is clipped). The function mapping the film intensity to the electron intensity,
ei = ρ(fi) is given by:

ρ(fi) =
∫ fi

0

1
η(τ)

d τ (2)
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Fig. 4. Plots of scanlines through diffraction patterns of La1−xCaxMnO3. The plot
shows that the calibrated film response and CCD response are very similar. The dif-
fering peak widths are caused by differences in focus.

and

ρ(0) = 0. (3)

Using this equation on the data from Figure 2, we obtain the response curve ρ,
shown in Figure 3 a. The integral relationship is useful since it results in a curve
which is significantly smoother than the measured noise data. Is should be noted
that result is not well modelled by a classic gamma correction curve (ρ(i) = iγ):
the curve for low pixel values is well modelled in this manner, but the response
at high pixel values is dominated by the film saturating. The result of applying
this to an image is shown in Figure 3 c.

Figure 3 a, b also show the effect of different values of r and n. As can be
seen, the computed response is insensitive to these values. Further, it shows that
the noise distribution is strongly non-Gaussian. This backs up the calculation
showing that the shot noise is small, since at the currents and exposure times
used, the distribtuion of shot noise (which follows a Poisson distribtuion) would
be approximately Gaussian.

2.1 Evaulation

In order to test the film calibration, one would ideally expose the film to a known
pattern (such as a ramp), and record the film response to the known electron
intensity. Unfortunately, this is not possible with the equipment involved. If a
sample viewed with a CCD is compared to a sample viewed on film, then the
relative intensities of the spots should be the same (when the film is corrected
for its nonlinear response). This is because a CCD responds linearly to electron
intensity.

Figure 4 shows linescans through a diffraction pattern taken on a CCD and
film. For comparison, the background level has been removed, and the brightness
of the images adjusted so that the main peaks are of the same intensity.



The darker spots are significantly stronger on the film than on the CCD.
When the film is corrected, the spots are approximatly the same height. This
gives a good indication that the film calibration produces accurate results.

3 Accurate measurement of parent lattice reflections

In order to measure the superlattice reflections, the parent lattice has to be found
first. This is done by manually identifying two adjacent parent lattice reflections.
The positions of these are then refined using the mean-shift algorithm [4]. Since
the diffraction pattern is regular, two spots are enough to define the entire grid
of reflections. In particular the pair of spots are used to define the primary
(a∗) axis, which is the direction along which the superlattice ordering occurs.
However, using only two spots to define the grid is not sufficiently accurate
without further refinement.

The two parent latice positions defines the entire grid of reflections. The
distortion is sufficiently low that each point lies close enough to the relavent real
parent lattice reflection that mean-shift can successfully refine the position.

There currently exist a variety of techniques for finding the parameters of
imaging systems, such as [5], which finds the parameters of pinhole cameras,
and [6] which find the parameters of a more sophisticated model, which models
nonlinearities with radial distortion. However, not only is the imaging system
in a TEM is not well modelled by these, but many of the standard calibration
procedures require multiple views of a 3D scene. Instead, we have a set of cor-
respondences between points in the image (the lattice reflections) and a known
shape (a 2 dimensional square grid, the scale, position and orientation of which
can be chosen arbitrarily), so we use a general purpose distortion model. The
model we use to cover all the distortions is akin to a nonlinear (higher order)
version of the homography (this is similar to the model presented in [7]):
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, (4)

where (x y) are the grid coordinates and (X Y) are the image coordinates, nor-
malised so that the range of X and Y is ±1. Writing H =

(
h1,1 . . .

. . . 1

)
, we first find

the parameters of H using a linear solution and then refine this using reweighted
least-squares to minimize the image-space error. Reweighting is required because
despite the distortion model, some errors are not easily modelled. For instance, a
relatively large amount of distortion can occur nearby where the film is clamped
in the scanner. Apart from the components of H required to get the image at
the correct orientation, position and scale, the components are typically quite
small, and make corrections on the order of 2–3 pixels towards the edge of the
image.



4 Accurate localisation of superlattice reflections

In order to find the superlattice reflections, several standard feature detectors
were tested, Harris [8], a DoG (difference of Gaussians—the detector used for
SIFT [9] features) based detector and FAST [10]. However, due to the noisy
background and the faint, sometimes overlapping nature of the features, the
performance of these detectors was poor on all but the best images. Instead, a
model of the image (as opposed to a general purpose detector) is used to achieve
much more accurate detection.

A diffraction pattern can be considered to be an unnormalised probability
distribution, with each pixel representing the probability that a given diffracted
electron will end up there. In addition to linear diffraction, the electrons also
undergo several linear and nonlinear effects. The end result is that the sup-
perlattice reflections end up approximately Gaussian. There is also spreading
from the main central reflection, which results in the space between the spots
not being completely black. This spreading typically takes the form of a very
shallow gradient away from the central reflection. On the scale of a pair of su-
perlattice reflections, this can considered to be flat. Therefore, we can model
the patch of image around a pair of superlattice reflections as a mixture model
consisting of two isotropic Gaussians (the superlattice spots) and a constant
background level, where the size, position and scale of the Gaussians and the
scale of the background are the degrees of freedom. We can then fit this model
direcly to the image patch around the superlattice reflections using the Expecta-
tion Maximization (EM) algorithm [11, 12]. Since a reasonable initialization for
EM is available—a∗ is known and the wave vector (q/a∗) is always quite close
to 0.5a∗—the resulting algorithm is very robust and is capable of finding the
positions of very faint spots, in high noise images. This is illustrated in Figure 1.

4.1 Evaluation

In order to test the accuracy of the superlattice localisation, the system was
run on simulated TEM images so that a ground truth measurement for the
spot position was known. The simulations measure accuracy under the following
common noise conditions:

1. Addition of uncorrelated noise to the image.
2. Addition of correlated, unmodelled intensity changes. These occur as a result

of spreading of bright parent lattice reflections and are manifested as an
intensity ramp aligned with the approximate direction of the superlattice
reflections. They are modelled here as a linear ramp, but in practice, the
profile is quite variable.

This is tested in the following manner:

1. Generate ideal image (a constant value with two Gaussian spots at known
positions).



2. Add a linear ramp (from −R to R in intensity) aligned with the superlattice
reflections.

3. Add uncorrelated noise, of standard deviation σ to each pixel.
4. Clip image intensities to the range 0–1.
5. Attempt to find the spot positions using EM.

When the mixture model fails to converge to a sensible value (for instance when
the size of the spots becomes zero, or the computed position or the spots cannot
be correct given that q < 0.5a∗) the result for that individual computation is
rejected.

The results of the computed mean for additive noise only (i.e. R = 0) are
shown in Figure 5 a. As can be seen, if the mean value of the computed values
is taken, then the mean decreases with increasing additive noise. The reason
for this is that EM will either converge on the correct spot position (with some
small amount of noise), or some a random position with the ‘background’ distri-
bution. When the noise gets large, the background distribution will dominate,
so the mean computed position will simply be the mean of the background dis-
tribution. At intermediate points, the computed mean will be between the two
distributions.

The mean can instead be computed robustly by modelling the computed
position as a mixture model of a Gaussian (representing correct points) and
outliers uniformly distributed between 0 and 0.5. This mixture model can be
fitted to the results (using EM), and the mean position of the Gaussian can be
taken as the computed spot position. It turns out that the background distrib-
tuion is not in fact uniform as one might expect, but is instead given by the
histogram in Figure 5 b. The reason for this is because there is a background
constant component in the image which will slightly bias the mixture model to
converge towards the centre. However, as can be seein in Figure 5 a, using this
distribution, instead of the uniform distribution in the computation of the mean
does not produce significantly better results. However, both robust techniques
produce significantly better results than the simple mean computation.

The robust computation of the mean also gives the probability that the mea-
surement is drawn from the Gaussian (foreground) or background distribution.
This can be used to compute the proportion of measurements which converge to
the correct place. This is shown in Figure 5 c. This can also be used to estimate
the accuracy (standard deviation) of the computed mean spot position as shown
in Figure 5 d. Note that when the noise gets large, the robust mean using the
histogram as the background distribution produces considerably more accurate
estimates of the accuracy.

For the correlated noise, the results of the computed mean varying with R are
shown in Figure 6. This shows that the system is very sensitive to unmodelled
correlated noise. This justifies the decision to treat each pair of supperlattice
reflections seperately, as opposed to computing the average pixel values over all
pairs, since a few patches with strongly correlated noise could easily prevent the
system from finding the correct spot position.
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Fig. 5. (a) Graph showing how computed values for q/a∗ vary with increasing noise.
The background intensity is 0.1, the spot intensity is 0.1 (typical values from images)
and the noise intensity (standard deviation) varies from 0 to 0.35. The patch size is
31 × 31 pixels. (b) Histogram of computed positions. The mean of this distribution
is the asymptotic noise mean in (a). (c) Proportion of points which converge on the
inlier (as opposed to background) distribution. (d) Accuracy of spot position, when
300 measurements are taken (a typical number).

5 Conclusions

This paper has demonstrated that it is possible to correct the nonlinearity of
photographic film, and to extract the positions of superlattice reflections to
a very high degree of accuracy, even when the signal to noise ratio is low.
These techniques have allows us to extract information from very faint super-
lattice reflections. By analysing subtle spatial variations of the superstructure of
La0.5Ca0.5MnO3 using the methods presented here, it was possible to show that
the periodicity of the superlattice can be altered by altering the strain present
in the thin film [13].
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Fig. 6. Plot of the computed spot position against the additive ramp intensity. The
parameters are given in Figure 5 and the noise intensity is 0.05. The histogram is taken
from the high noise limit with no additive ramp. When the ramp intensity exceeds about
0.6, there are no instances in which the system converges to sensible value.
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