Rapid Scene Reconstruction on Mobile Phones from Panoramic Images
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ABSTRACT

Rapid 3D reconstruction of environments has become an active re-
search topic due to the importance of 3D models in a huge number
of applications, be it in Augmented Reality (AR), architecture or
other commercial areas. In this paper we present a novel system
that allows for the generation of a coarse 3D model of the environ-
ment within several seconds on mobile smartphones. By using a
very fast and exible algorithm a set of panoramic images is cap-
tured to form the basis of wide eld-of-view images required for
reliable and robust reconstruction. A cheap on-line space carving
approach based on Delaunay triangulation is employed to obtain
dense, polygonal, textured representations. The use of an intuitive
method to capture these images, as well as the ef ciency of the re-
construction approach allows for an application on recent mobile
phone hardware, giving visually pleasing results almost instantly.

Index Terms: 1.2.10 [Arti cial Intelligence]: Vision and Scene
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tion and modelling. In Section 3 an overview about the entire ap- is reconstructed from a live video through on-line reconstruction.
proach is given, discussing the entire work ow in detail and pro- From the point cloud, a 3D Delaunay tetrahedralization is com-
viding notes on design decisions. Section 4 covers the main partputed and used as the underlying structure in a probabilistic space
of this work, describing the algorithms used to create 3D models carving approach. The mostimportant aspect of the aforementioned
from image sets exhaustively. The results of experimental tests us-approaches is their real-time or near real-time performance and the
ing mobile hardware are given in Section 5. The paper concludes suitability to be applied in the context of AR scenarios.

with a summary of the presented work and an outlook on future

improvements in Section 6. 2.3 Mobile Approaches

The most prominent approach to model generation on mobile
phones is an improved PTAM version proposed by Klein and Mur-
Many different approaches to automatic 3D model reconstruction ray [14]. The original PTAM was modi ed to run on aApple

have been proposed in the last decade, mainly coming from the CViPhone 3G, and was demonstrated to allow mapping and tracking of
community. The majority of these techniques perform the task in workspace-sized areas using solely the computational and memory
an off-line manner. Solving the task on-line using live video feeds resources of the mobile phone. Leteal. presented a mobile phone-
has become possible only recently, mainly due to the use of very based 3D modelling framework in which images were captured on
powerful hardware. Approaches that can realistically be used on the device whilst the 3D model reconstruction was performed on
mobile phones have been proposed in the past, but they are onlya remote server [16]. The mobile phone can only be considered
very few in number and limited in scope. Our review of related as a thin client in this respect. Hast al. described a system to

2 RELATED WORK

work is organized accordingly. model small objects using a marker target [11]. The approach is
) ) based on space carving and the marker target is used to solve the
2.1 Ofine Reconstruction foreground-background segmentation task. The approach works in

Snavelyet al. proposed a system to reconstruct buildings from large real-time on a mobile phone and gives reasonable results on, for ex-
collections of images from online community photo collections ample, tokens in a board game. Apart from these examples, using
[26]. Later, Agarwalet al. presented an improved version of this Mobile phones in any kind of reconstruction task has not yet been
system to perform large-scale reconstruction of urban areas usinginvestigated widely.

clusters of computers and huge amounts of images [2]. As a result ) . . )

both systems give point cloud reconstructions of the environment. 2-4 Discussion and Considerations

Klopschitzet al. presented an approach to robustly reconstruct ur- The comparably small amount of computational and memory re-
ban areas from large sets of unordered images [15]. A systemsources makes the use of currently known off-line or on-line ap-
fusing orientation and location priors to speed up reconstruction proaches unreasonable on mobile phones and tablets. Even if, for
was presented recently by Irschatzal. [12]. Other approaches to  some reason, these devices were able to run at a performance com-
modelling and reconstruction include for example [8, 23] or [25], parable to desktop computers for short periods of time, limited bat-
amongst others. These approaches are considered to solve the tasiry capacity would remain the main opposing factor.

of modelling as an of ine process, regardless of computational and  Although this already describes a severe problem with traditional

memory demands in most cases. approaches, there are less obvious dif culties. Concerning video-
. . based approaches, the need for constant tracks of natural features
2.2 Online Reconstruction places an almost insuperable challenge using a mobile phone cam-

An example of a point cloud reconstruction generated online from era. Camera blur and jerky camera motion due to taking steps in
a live video feed is the work of Klein and Murray [13]. The so- the environment causes feature tracking to fail regularly, such that
called PTAM system allows for concurrent mapping and tracking many of the required image correspondences can not be correctly
with a single camera in small workspaces, triangulating 3D feature established. Moreover the user is forced to constantly point the mo-
points and using a set of keyframes for self-localization and track- bile phone camera up and towards the object to be reconstructed, at
ing. Several extensions to PTAM have been proposed thereupon.the same time moving around as smoothly as possible and trying
Ventura and Bllerer worked on extracting planes from the sparse to keep the camera as steady as possible. This unfortunately places
point cloud and determining the extents of the planes through denseunrealistic requirements in terms of user-friendliness. In this re-
image matching [32]. Van den Henget al. proposed a video-  spect, video-based on-line reconstruction techniques might not be
based in-situ reconstruction system with little manual interaction, ideally suited for use on mobile phones.
allowing the user to accurately model objects in a short amount  As an alternative, many individual images could be captured us-
of time [29, 30]. Building upon previous work, PTAM is used to ing the mobile phone to perform an off-line reconstruction step af-
provide camera tracks plus a point cloud map and then the sys-terwards. However, this approach also faces several dif culties.
tem switches into an interactive modelling mode to create mean- The narrow eld of view on the mobile phone means that a large
ingful 3D models of the environment. Newcombe and Davison re- number of overlapping images are required to be taken in order to
cently demonstrated the dense reconstruction of workspaces fromcover a building or scene completely (cFigure 2). The com-
live video based on implicit surface calculations and dense optical plexity of a necessary bundle adjustment step grows very rapidly -
ow [19]. The approach gives impressive results, whilst requiring & (n3) - with the number of cameras to be estimated, thus increas-
a considerable amount of computational power, however. ing the overall computational load considerably. Furthermore, the
Independent from PTAM-based methods, Pollefeysal. de- user has to ensure that there are no gaps in the image set. From
scribed a system performing real-time reconstruction of urban areasa set of images captured it is dif cult to predict with certainty if a
using video feeds [22]. Their approach makes use of a multi-camerafully connected reconstruction is possible or not. This is usually cir-
array and uses large amounts of processing power available fromcumvented through the use of Internet image databasgsrlickr,
both the CPU and GPU of desktop systems. Bunnun and Mayol- which hold collections of images of the same place taken by many
Cuevas proposed a system to interactively build 3D wireframe mod- people. Needless to say that this is not a reasonable option in our
els of objects [6]. The system uses a combination of a camera andscenario.
computer mouse as a device for tracking and editing. é€taail. Many applications on mobile phones that leverage CV methods
presented the ProFORMA system which automatically and inter- rely on a powerful remote server for solving the respective process-
actively generates 3D models of objects [21]. A 3D point cloud ing task. This leaves the mobile phone client as a device for data ac-
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Figure 2: Left: Three wide eld-of-view images capture almost the Surface Reconstruction 5
whole environment. Right: More narrow eld-of-view images are re- =
quired to capture the same scope. The dense point-cloud recon- Texturing g
struction was created using the approaches of Klopschitz et al. [15] =)
and Furukawa et al. [10].
Visualization

quisition and information visualization as described in the example
before. In the context of 3D reconstruction, the amount of image
data is substantial. Since data of high quality is needed, transfer- ) ) )
ring large numbers of high-quality images or videos becomes quite Figure 3: Work ow of our approach_runnlng ent|rely on mobile phon_e
costly in terms of data transmission. Moreover in certain areas, hardware. Most parts of the algorithm can run simultaneously with
transferring large amounts of data from mobile devices may not be the panorama capturing application. Solely the surface reconstruc-
possible due to lack of network infrastructure. tion and texturing stage are run serially.

Taking all these considerations into account we conclude that a
novel and speci cally designed approach is necessary to solve the i . )
task of 3D modelling and reconstruction on the targeted class of de- & 'epresentation for texturing the models. Finally, the reconstructed
vices. The aim is to develop an approach that is at least one order offodel can be visualized on the device itself.
magnitude more ef cient in terms of computational requirements, 3.2 Parallel Processing Pipeline
compared to desktop reconstruction approaches. Even more im-"" )
portantly, however, is the aspect of user-friendliness concerning theAlmost all components of our algorithm can perform au-
data acquisition conditions. The goal is to allow for a convenient tonomously, while the image acquisition process is the only part
way to capture the required images, at the same time minimizing that requires user l_nteractlon. Therefor_e most tas_ks In the_ pipeline
their number and the required manual user interaction. A nal re- can be performed in the background without any intervention nec-
quirement is to provide the user with a reasonable reconstructionessary. This mainly includes the costly feature extraction and
result as quickly as possiblee. within the time frame of several ~ matching steps and bundle adjustment. Since mobile phones with

seconds. multi-core CPUs are becoming available now, our approach can
take advantage of this feature immediately. However, more intu-
3 APPROACH DESCRIPTION itive possibilities exist to cut down the time needed for modelling.

. . . For the task of capturing multiple images the user has to change
Since our approach consists of multiple complex components, apqsition. While this is done the device's computational resources
short overview is given about the design of our approach and to de-5re ysyally idle. In our approach these time slots are spent on the

scrib(_a how these parts are interconnected. As the image acq“iSi_tionaforementioned processing steps. This leads to a very rapid nal
algorithm is a module separate from the rest of our reconstruction .oonstruction time. as will be shown later.

pipeline, the acquisition procedure is also described.
3.3 Panoramic Image Creation

Panoramic images are created online in real-time whilst panning the
In Figure 3 a owchart of our approach is depicted. The image camera around the user's location. We use a version of the PanoMT
acquisition component is used to capture panoramic images. Assystem described by Wagnetral. [33]. The mobile device is used
soon as panoramic image capture begins, feature extraction startso collect wide eld-of-view images of the same building/outdoor
in the background. Once the panoramic image acquisition is com- scene from different locations. For each panoramic image, the pro-
plete, image alignment and feature matching occur if more than one gram maps frames from the live video onto a cylindrical map whilst
image is available. From the matches, epipolar constraints can betracking the rotation of the device with respect to the map. Track-
calculated using the 5-point pose or the 3-point pose algorithm, de-ing and map building work at frame-rate (30Hz), even when using
pending on the number of currently captured panoramas. From thecomputational resources for other processing tasks. Two panoramic
camera pose estimates and established feature correspondences, 3Mages captured using the system are depicted in Figure 4. Con-
points are triangulated. The bundle adjustment step is run after eachtrary to normal panorama stitching programs, the panorama is built
new image is nished, improving the accuracy of the camera pose interactively as the user sweeps the device over the view of the en-
estimates and the triangulated 3D points respectively with each ad-vironment. Capturing a panorama takes only a few tens of seconds
ditional image. From the camera geometry estimates, additional of interaction, as there is no need to carefully align a sequence of
matches can be established, which in turn increases the number obverlapping images. The algorithm makes the assumption that the
reconstructed 3D points. camera is rotated around its optical center during panorama acqui-
All these steps can be run in parallel to the actual image acquisi- sition, which is often violated since the user is usually unable to
tion algorithm. After all images have been captured, surface recon- perform a pure rotation around the device's optical center. Since
struction is performed using space carving, followed by generating the scene captured is usually far away compared to the distance the

3.1 Overview
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Figure 4: Two sample panoramic images from Cambridge, UK cap-
tured with the online panorama mapping algorithm.

4.1.1 Feature Extraction

A large number of different natural feature types have been pro-
posed in the context of reconstruction. Although any feature could
theoretically be used in our approach, we experiment with two dif-
ferent feature types, a SURF-like descriptor originally proposed by
Bayet al. [5], and a custom combination of FAST corners [24] and
an 8 8 pixel image patch. This latter feature shall be referred
to as aFAST patchfor the remainder of this paper. SURF Fea-
tures, like SIFT features [17], provide a degree of robustness to
scale and af ne transformation, but are faster to compute. Feature
extraction speed is critical for rapid reconstruction and thus we use
an ef cient modi ed implementation of SURF [3]. Image features
can be extracted in the background whilst the panoramic image is
captured, without affecting the frame rate of the panoramic image
capture. Features are extracted from “cells” (small rectangular re-
gions) in the panorama as each cell is completed. Since cells of the

optical center moves, however, panoramic images can still be suc-Panoramic image that have already been mapped remain unmodi-

cessfully captured.

3.4 Cylindrical Camera Model

The cylindrical camera model used with panoramic images in our
approach is formulated as follows. L&} = (Xw, Yw, Zw, 1)T be the
(homogeneous) 3D coordinate of a point in the world frameknd

an element oSE(3) [31] representing the pose of cameraThe

3D coordinate of the point in the coordinate frame of canwra
Xe = (X, Yo, Ze,1)T is expressed as:

Xc = Ec¥w

1)

The point of intersectiorx;, of the ray cast by. and a cylinder of
radius 1 with its axis aligned with the y-axis of camer& given

by:

Xi 1 Xc
Xij = Yi = T Ye (2
z XTz \ z

If the centre of the cylindrical image of siZg S is taken to
be where the positive z-axis intersects the cylinder, \érid and
vertical eld of view (in radians), the function taking a point on
the cylinder in 3D to cylindrical image pixel coordinatg$,Y)"
(origin in top left) is:

0 = (atan2;,z)) (mod 27 (3)
x\_ [ (05+£&) (modsy
( Y )7 S (05 2tZin%> @

Also, note that a correct recti cation of the panoramas to obtain

ed later on, these areas are already processed for feature extrac-
tion.

41.2

The panoramic images are centered around the rst keyframe used
to initialize the capture and thus, the cylindrical images may not
be aligned to each other. To make subsequent feature matching
more robust and ef cient, we calculate a coarse alignment between
multiple cylindrical images. Alignment is described only as a rota-
tion around the cylinder axis, assuming a level horizon and similar
standing height. We subsample the entire panoramic images to ver-
sions with a resolution of 36x4 pixels. This subsampling is created
by averaging rectangular regions in the cylindrical images. The
sum of squared differences (SSD) of the intensity values over 36
horizontal 1-pixel shifts is then calculated. The alignment rotation
is chosen as the shift which generates the lowest SSD. This proce-
dure is used to align all images to the rstimage through iteratively
aligning each new image to the previous one. Using subsampled
images of resolution 36x4 allows the images to be aligned within
an accuracy of approximately 10 In devices with digital com-
passes, the alignment procedure can be replaced by aligning each
panorama based on the North direction.

Image Alignment

4.1.3 Feature Matching

Exploiting the fact that we are using panoramic images which are
roughly aligned, we can greatly constrain the search regions within
which matching occurs for ef ciency. Matching across aligned im-
ages is restricted to 10% of the image width (corresponding to 36
of the 360 panoramic image). Multiple match candidates for each

a level horizon is not necessary for reconstruction purposes. Thefeature are obtained in order to cope with the repetitive features
cylindrical camera model maps the image pixels to rays in space found in many urban environments.

and any subsequent computation of epipolar geometry and 3D cam- A different method of performing this matching, and which
era pose is formulated in terms of rays emanating from the camerayields a faster matching time, is to store the feature descriptors in a

centers.

4 RAPID RECONSTRUCTION FROM PANORAMIC IMAGES

tree. A k-means tree enables very rapid matching, but unfortunately
at the expense of being too expensive to build at run-time. A k-d
tree is an alternative, but search performance suffers for large di-

The user records several wide FOV images using the panoramamensions. Thus the cost of building trees for faster searching often
mapping algorithm. These images taken at different positions serveexceeds the computational requirements of matching exhaustively

as the basis for our reconstruction pipeline. The reconstruction
pipeline consists of several stages as described in this section.

4.1 Generating Correspondences

in strips in the panorama.

Using a constrained search region when matching between
aligned panoramas increases search ef ciency, but in certain scenar-
ios limits the minimum depth a point can be successfully matched.

Robust and error-free feature correspondences between the individin the direction of the baseline between two panoramas, no depth
ual panoramic images are required for the subsequent triangulationconstraints exist, as distance only affects the point's imaged posi-
and reconstruction. We employ a multi-stage procedure to provide tion in the vertical direction, but in the direction perpendicular to

robustness against the distortions occurring in the cylindrical pro- the baseline, a change in depth causes a point's projected position
jections that lead to many wrong matches in scenes with repeatedto also change in a sideways direction. Therefore, using a search
structure. width sets a closest distance in the direction perpendicular to the
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Figure 5: This diagram shows the con guration which generates the
worst case minimum depth of a reconstructible point given a search
region of 0.1  image width, which corresponds to a 36 search an-
gle. The 3D point is equidistant from both cameras and lies on a line
which is perpendicular to the baseline (of length b). The minimum
distance to the camera in this con guration for a point to be success-
fully matched is denoted d. Conversely, a point in the image near
the extended baseline can be modelled regardless of depth, as its
sideways disparity will always lie in the search region.

baseline at which a point can be successfully matched, which is a
function of the baseline distance, as shown in Figure 5 .

The worst case point is equidistant from both cameras, and lies
on a line perpendicular to the baseline. Using the right angle def-
inition of Sine, the ratio between the length of the baselmeand
the minimum distance of the poirdt, can be calculated.

. b/2 Figure 6: The matching process. (a). A panorama generated using
sin9 = d ®) PanoMT. (b). FAST features detected on the panorama. (c). unique
b/2 matches found between two panoramas. (d). Epipolar inliers gener-
d = - (6) ated from all multimatches using unique matches as hypotheses for

g ;Ig(?b @ 5-point pose with PROSAC.

This shows that the minimum distance for matchable points in
this con guration is 3.20 baseline, so for a typical 1 meter base-
line, points perpendicular to the baseline should be at a distance of
at least 3.20 meters away. This limit only applies to points perpen- ) ) o
dicular to the baseline - points in line with the direction of the base- When the rst two images are collected, no information is known
line can be modelled regardless of depth, as point depth only affectsabout the 3D locations of features identi ed in the images. We at-
vertical position in this case. For points between these two extreme tempt to recover the epipolar geometry of the cameras by using 2D
cases, the minimum reconstructible distance varies between 0 and€ature correspondences and the ve-point pose algorithm[20] in
3.2 baseline. conjunction with PROSAC[7] (features are sorted by match SSD).

Multiple hypothesis matches are generated, whereby all matchesHypotheses for PROSAC are generated using the unique matches
within a certain distance in feature space are recorded. Feature disSet which was described in the previous section. Once an essential
tances are computed using sum of squared differences (SSD). Mul-matrix with a high number of inliers is obtained from PROSAC,
tiple hypotheses matching is very important for many urban envi- the matrix is decomposed into 4 possm.le solutions for the rotation
ronments where there is repetitive texture in the scene. Multiple @nd translation of the cameras (translation up to scale). The correct
hypothesis matches are limited to a maximum of 8 hypotheses. Thesolution is chosen by taking a small set of inlier correspondences
hypotheses are stored in a heap data structure, enabling the 8 lowestnd triangulating their 3D position using each of the 4 poses, then
scoring hypotheses to be retained ef ciently without having to keep choosing the solution which corresponds to the most points being
track of a fully sorted list of match scores. in the positive direction of the ray for both cameras. Results from

After the multiple hypotheses matches are found, we use a sub-feature matching and epipolar geometry estimation can be seen in
set of these matches from which to draw hypotheses for robust es-Fig- 6.
timation. This is due to the low inlier rate when drawing from all .
multiple hypotheses requiring too many iterations. The subset from 4-3  Bundle Adjustment
which we wish to draw hypotheses from contains match hypothe- Having obtained the camera pose and a set of 2D feature correspon-
ses which are deemed “unique.” Unique match hypotheses are de-dences for two frames, it would now be possible to simply nd the

ned as multiple hypotheses matches which either have only one closest point of approach of rays cast by the 2D observations to con-
hypothesis, or have multiple hypotheses where the lowest scoredvert the 2D features to 3D landmarks (a 3D point with information

hypothesis is less than 50% the score of the next lowest.

4.2 Epipolar Geometry Recovery
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about where and in which images it was observed). This approachuse 2D-3D correspondences and the 3-point pose algorithm [9] in
is, however, limited to two images, and does not provide a way of conjunction with PROSAC to estimate camera pose. All the infor-
reducing the re-projection error. mation available is then bundle adjusted to obtain accurate point
Thus instead, we formulated a triangulation scheme which ex- locations and camera poses. Using the bundle adjusted pose, epipo-
presses the probability distribution of the 3D position of a landmark lar inliers are found for multiple hypothesis matches not associated
in terms of camera pose and 2D observations only, and in a mannerto a landmark, allowing new landmarks to be created. In the nal
which works for more than 2 frames. A single 2D measurement stage of feature matching, landmarks without a correspondence in
of a 3D point corrupted by Gaussian noise on the image plane im- the current frame are reprojected into the image and searched for
plies that the 3D point lies within a conical probability distribution.  within a 3 pixel radius.
We approximate this distribution with a Gaussian. Multiplying the
distributions from all 2D measurements together gives a Gaussian4-> Surface Recovery
probability distribution, the mean of which is the triangulated 3D The model output from bundle adjustment is a 3D point cloud,
point position. We take the width of the Gaussian to be the width of which whilst capturing the geometry of the observed features, is
the cone at the estimated position of the point, so this scheme mustonly a sparse representation of the scene. For many augmented re-
be iterated a few times to get an accurate estimate of the 3D pointality applications, and indeed a useful visual representation of the
position and its uncertainty. This concept shown in Fig. 7, and is a scene for the user, a dense 3D model is required. A modi ed ver-
form of implicit bundle adjustment [18]. sion of the probabilistic space carving algorithm described by Pan
This formulation analytically expresses the position of land- et al [21] is used to obtain the surface model, with changes imple-
marks as a function of camera positions and observed pixel co- mented to allow the system to perform inside-out space carving.
ordinates, and thus enables us to directly calculate the derivatives The convex hull of the point model is partitioned into tetrahedral
of how the reprojection error of landmarks changes with respect to voxels via a Delaunay tetrahedralisation using QHull [4]. A Delau-
camera pose. This allows us to perform bundle adjustment, the min-nay tetrahedralisation is the extension of a 2D Delaunay triangula-
imisation of re-projection error of landmarks with respect to both tion to 3D. The convex hull of the point cloud is partitioned into
camera poses and landmark positions, using Levenberg-Marquadttetrahedra with the condition that the circumsphere of each tetra-
An M-estimator [28] is used in the least squares optimisation to hedron contains no vertices of any other tetrahedra. This process
make the bundle adjustment robust to outliers. Using this formula- merely partitions the convex hull and thus places tetrahedra over
tion of triangulation means that landmarks are not explicitly repre- concavities in the scene, and so further processing is required to re-
sented but are purely functions of camera pose (and xed 2D ob- move these extra tetrahedra. Tetrahedra are carved away based on
servations), so 3D landmark positions never appear in the bundlelandmark visibility, with the probability of a tetrahedron existing
adjustment, greatly reducing the computational complexity. This being reduced if it occludes a landmark.
directly exploits the primary sparseness inherent in the structure Let T represent a triangular face of a tetrahedral vogehe
from motion problem, instead of applying the Schur complement camera numbek the landmark number arfg. x the ray from the
to achieve similar results. Classical bundle adjustment methods optical centre of camerato landmarkk. Let v represent the set
[27] can also be used to similar effect if using cylindrical camera of all rays with indice pairgc,k) for which landmarkk is visible

Jacobians and ported to the mobile platform.
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Figure 7: Diagram showing a form of implicit bundle adjustment
where points are parameterised purely as a function of camera pose
and xed 2D observations. Top left: Conical uncertainty distribution
of a single observation of a point in one cylindrical camera. Top right:
Gaussian approximation of the conical distribution of same width as
conical distribution at the predicted point depth. Bottom: Top view
of multiple Gaussian distributions representing observations of the
same point in different cameras, multiplied together to obtain covari-
ance of 3D point.

4.4 Subsequent Pose Estimation and Feature Matching

in camerac. Landmarks are taken as observations of a surface tri-
angle corrupted by Gaussian noise along theRgy, centered at

the surface of triangld; with variances?. Let x = 0 be de ned

at the intersection oR.x andT;, and letx be the signed distance
alongR.k, positive towards the camera. Ligtbe the signed dis-
tance fromx = 0 to landmarkix. The null hypothesis is th& is

a real surface in the model and thus observations exhibit Gaussian
noise around this surface. The hypothesis is tested by considering
the probability of generating an observation at least as extreme as
Ik:

|k 1 X2
P(LyRck, Ti) = — — |d 8
WiRewT) = [ (5 Jdx @
This leads to a probabilistic formulation of tetrahedron carving:
Pexist(Tijv) = H Pexist( TijRe k) )
v
P(LkjRek, Ti)  if Rek intersectsT;

Pexist(Tinc,k) = { (10)
If Pexist(Tijv) > 0.1, the null hypothesis tha exists is accepted,
otherwise it is rejected and the tetrahedron contaifijrig marked
for removal.

It is not necessary to test all tetrahedra, as surface tetrahedra act
as a barrier, shielding tetrahedra below from in uencing the sur-
face mesh. In [21] tetrahedra are carved in a recursive manner,
starting from those tetrahedra on the convex hull. If a tetrahedron
is carved away, then its neighbours are tested for removal. This
method works for the outside-in case, where the camera is moved
around the outside of an object. When modelling scenes, however,

1 otherwise

Pose estimation between the rst two images is conducted using theit is often the case that the camera is within the convex hull of the
5-point pose algorithm. After the initial pair, points are triangulated points in the environment, in which case starting the carving pro-
to obtain 3D landmark positions. This allows subsequent images to cess with convex hull tetrahedra may not carve away any tetrahedra



at all (as occluding tetrahedra actually only exist within the con- Number of Images 3 4 S
vex hull). Therefore we generalise the carving process such that it Landmark inliers 499 | 511 539
works for both outside-in and inside-out cases. Number of Triangles 1013 | 1120 1249

The rst step of the algorithm is to determine which tetrahedra Save image&features 13s| 13s| 1.4s
contain camera points. This can be simply done by forming plane Read image&features 09s| 1.0s| 1.0s
equations for each face of each tetrahedron. If the a point corre- Align last image 0.5s| 0.5s| 0.5s
sponding to the camera position lies on the "internal” side of the Multimatch last image 25s| 24s| 2.6s
planes formed from each face of a tetrahedron, then the pointis con- 3-point pose 21s| 23s| 26s
tained inside the volume of the tetrahedron. Tetrahedra which con- Match Densi cation 03s| 04s| 0.4s
tain a camera point should be removed, and the recursive carving Bundle Adjustment 21s| 3.0s| 4.6s
algorithm started at tetrahedra which neighbour the removed tetra- 3D Delaunay Triangulation 05s| 06s| 07s
hedron. If any cameras are outside the convex hull of the object, Space Carving Z1s| 52s| 6.7s
then the point lies within the in nite tetrahedron, and thus carving Render most recent cube map 1.5s | 1.5s| 1.5S
should be performed on its neighbours, which correspond to tetra- Total Reconsiruction Time: | 14.5s | 16.9s | 20.6s

hedra on the convex hull.
Once recursive carving is complete, the surface mesh can be ex—rapje 1: Reconstruction times for increasing input image numbers

tracted by marking all triangular faces of tetrahedra with no neigh- o the Nokia N900 smartphone, using the FAST patch descriptor (for

bours. The cylindrical image is mapped onto a cube in order t0 the same sequence as Fig. 10). Timings are from when the nal
allow ef cient and perspective correct texture mapping of the sur- panoramic image is complete.
face mesh.

5 [EXPERIMENTS 5.2 Timing Results

For our experiments we recorded several sets of panoramic im-_l_ ble 1 sh timi Its for diff i b finout i
ages from buildings in Cambridge, UK, Graz, AT and Vienna, AT. Iathe S °W|S:A'gn_|'_ng rte?]uf stor iferen nurg eﬁho 'nﬁLt'. Images.
As a mobile platform we used ldokia N900Osmartphone with a n this case, paich features were used, although timings are

600MHz ARM Cortex A8 CPU and 256MB of RAM. The device similar for SURF descriptors as descriptor extraction itself, which
runsMaemoOS andECam camera drivers from Adahﬂ al [1] would cause the performance difference, is performed in the back-

were installed to enable greater control of camera parameters. Thetghrputn%ldurxlg pangramlc |ma|ge C0|:ECIIOI’; aglci_thuts ntcr)]t included In
entire reconstruction runs on the mobile phone platform, produc- ] IS iiri de'b t\cha2 elfeetinn’ een;er: S;n(ior:nr: u Ingt ? | erprcr)]c(;egsir;g
ing textured mesh models. For visualization purposes, the textured equired between collecting panoramic images total arou -

models were loaded and rendered on a desktop computer@sing seconds for 3-5images, with the nal textured reconstruction taking
omview. between 14-21 seconds after the nal panoramic image is collected.

A split bar chart of the timing results is given in Figure 8, enabling
the contribution of each part of the algorithm to the reconstruction
time to be seen. Including panorama creation tim&-20 seconds
Figure 9 shows results from preliminary experiments to study the per panorama), a reconstruction from 3 panoramic images can be
feasibility of the proposed reconstruction pipeline. The images created in around 1 minute and a reconstruction from 5 panoramic
of the church were captured using a PC-based panoramic im-images in around 2 minutes.

age mapper, generating high resolution panoramic images of size

4000x1600 from a 640x480 video stream. The images were col-

lected using a camera attached to a tripod which allowed the cam-

era to rotate roughly around its optical center. These results demon- Reconstruction time after last image captured

strated the proposed approach would work with idealised data (high
resolution and xed optical centre).

Figure 10 shows reconstruction results for an image sequence 25
captured on a Nokia N900 smartphone and processed on the de-
vice itself. No tripod was used and the panoramas were captured
freehand. Panoramic images were captured from a 320x240 video 20 W Space Carving
stream, with the nal panoramas being of size 2048x512. The rst
reconstruction set (Figure 10 left middle), uses only 3 panoramas,
and recreates the overall shape of the courtyard, closely resembling 15

5.1 Reconstruction Results

Render cube map

Delaunay

M Bundle Adjust

the ground truth shape as shown in the aerial image from Google = Match Densification
Mgps. I_:or the second reconstruction set (Figyre 10 left center), ¢ B 3-point pose
using 7 images, the reconstructed point cloud is more rectangular + 10 ) )
. . W Multimatch last image
and complete due to the increased number of observations for bun-
dle adjustment. The rendered mesh models show that views ren- Align last image
dered from novel viewpoints resemble the real scene, as seen from  ° m Read image&features
the panoramic image. The generated mesh models are around 500 .
. . . . B Save image&features
700KB in size excluding cube map textures for this dataset. o
The effect of increasing the number of cameras can be seen in 3
the bottom row of Figure 10. As expected, increasing the number 4 5
of cameras increases the accuracy and completeness of the model ¢ Number of images
the additional observations result in lower uncertainties after bundle
adjustment. Figure 8: A split bar graph of the information in Table 1, showing
how split and overall timings are affected by increasing the number
Lwww.geomview.org of panoramic images.
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Figure 9: Graz Church. Early preliminary experiments performed as a proof of concept. Left: One of three wide eld-of-view images captured
on a tripod mounted webcam. Middle: Point cloud from bundle adjustment. Right: Texture mapped surface model.
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Figure 10: Cambridge, UK. 3D reconstruction results generated on the N900, using FAST patch descriptors. Top: Panorama generated free-
hand using PanoMT. 2nd Row: Left to Right: Point cloud and mesh generated from 3 panoramas. Point cloud and mesh generated from 7
panoramas. Blue points represent landmarks, red points represent calculated camera positions. Google Maps aerial view of modelled location.
3rd Row: Rendered novel views of areas in the reconstructed model. Bottom: Reconstructed models using an increasing number of cameras,

from 3 (left) to 7 (right).
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Figure 11: Left: Annotating a panorama with 2D labels during
panorama creation [33]. Middle: Using the 3D model generated us-
ing our pipeline, 2D annotations made on a panoramic image during
panorama creation can be upgraded to 3D annotations. Right: Side
view of reconstructed point cloud model showing depth of labels (the
textured mesh is hidden for clarity).

o Figure 12: Top: Model reconstructed using FAST patch descriptors
5.3 Sample AR Application (left) and SURF descriptors (right). Bottom: Distribution of FAST
In order to demonstrate a sample application for this reconstruc- features (left) and SURF features (right).
tion pipeline, the existing use case of 2D panorama annotation as
demonstrated by Wagnet al. [33] was extended to enable the an-
notation of 3D locations. Annotating a point on a panorama dur- eld of view), it can be seen that a deviation of 0.05m to the cam-
ing panorama creation enables a 2D annotation to be placed on &era's distance leads to a vertical angular error @50(0.8 pixels).
panoramic image. The annotation is constrained to a ray emanatingThe main error is thus the horizontal angular error, which could be
from the optical centre of the panorama through the pixel location reduced by capturing the enlarged panorama and loop closing, then
of the annotation. This ray can be intersected with the mesh modelresampling the image such that it maps back into the correct sized
generated by our reconstruction pipeline, thus providing a depth co-image (and thus ts into a 36Ccylindrical panorama).
ordinate for the originally 2D annotation. Figure 11 shows a view
of the panorama creation application during labelling and creation
of a panoramic image, as well as the annotations registered in 3D
once the 3D model is constructed.

5.4 Feature Comparison

During our experiments, two different types of feature were used.

Figure 12 shows images of a scene reconstructed using FAST

patches (left) and SURF (right). The distribution of features are

shown below the rendered views. As can be seen, their distribu-

tions are very different, with FAST corners clustering around cer-

tain areas of high intensity change, whilst SURF features are spread

much more evenly throughout surfaces. Using each type of feature

has advantages and disadvantages. FAST features are very stable,

but are not evenly spread out, thus causing loss of detail in cer-

tain areas. On the other hand, SURF features have a much better

spread, but appear to be less stable. Overall, it was observed that

model quality was largely similar, although the extraction of FAST Figure 13: Angular error arising from optical centre motion. Left:
patches was much faster than the extraction of SURF features, andrellow and red cylindrical panoramas captured respectively with a
thus a higher density of FAST patch descriptors could be extracted static optical centre and an optical center that moves in a circular
in the background for each cell without affecting the frame-rate of motion as the panorama is being captured. The panoramic image

the panorama creation tool. is captured clockwise for 180 degrees before returning to the centre
and capturing in the anticlockwise direction. Translation in the optical
5.5 Optical centre translation analysis centre leads to an increase in the size of the cylindrical image which

Translation of the optical centre during collection of a panorama has 'S 9ePendent on scene depth and radius of motion. Right: when the
red cylindrical image is mapped to the actual size of the panorama

two effects. One effect is that It can cause the seam of the panorama(ye”OW circle), the image is larger than 360 degrees due to the optical
to overlap, the amount_ by .Wthh IS dep_en_dent on scene depth andcentre translating, leading to the panorama seam overlapping.
the amount of translation incurred. This induces a horizontal an-

gular error to rays from the optical centre of the cylindrical camera
to pixels in the image. A diagram of this effect can be seen in Fig.
13. A typical scene of depth 10m, with radius of circular optical 6 CoNCLUSION

centre motion 0.05m leads to an angular error from 0O (in the di- We presented a novel approach to scene reconstruction on mobile

rection of the rst image of the panorama) up t®.5 or 5 pixels devices capable of producing dense textured models just several
in the image (in the area near the seam). In reality this is lower due seconds after panoramic image capture. The area of dense scene
to the rstimage already lling the 66 horizontal eld of view of reconstruction on mobile phones is relatively unexplored, and we

the N900 with no optical centre motion (image is taken instantly), provide some of the rst reconstruction results demonstrating what
and optical centre motion not always accumulating angular error in is possible on these devices with very limited computational power.
the same direction. The second effect of moving the optical centre  Our approach employs the use of an easy and user friendly
is the effect of camera position on the ray angle. Taking a point 10 method of capturing input data through the on-line creation of
metres away and 10 metre high (worst case near the vertical limit of panoramic images, and exploits background processing and idle
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processing time between image capturing to reduce nal compu- [12] A.lIrschara, C. Hoppe, H. Bischof, and S. Kluckner. Ef cient structure
tation time. The reduction in data redundancy is exploited in order
to be able to generate textured reconstructions in just several sec-

onds on handheld devices, enabling immediate use of these models
in Augmented Reality applications. Results from different datasets [13

are shown, ranging from full 360 degree panoramas to wide eld
of view images of single buildings. We also demonstrate a sample

use case of the reconstruction system, enabling the placement o
3D labels in a scene via simple user interaction during panorama

creation.
In the future, it would be interesting to be able to fuse the sys-

tem with additional mobile phone sensor information such as GPS, [15)

which would allow images to be registered (noisily) to the world

coordinate frame, or the accelerometer, which would enable the [16]

detection of signi cant motion of the optical center, which could
cause the algorithm to fail. Another avenue for future work would
be the exploration of immediately tracking a scene (in full 6 degrees

of freedom) from the rapidly generated mesh model and landmarks. [17]
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