
3F6 - Software Engineering and Design

Handout 8

Design Patterns (III) and Refactoring
With Markup

Ed Rosten

Contents

1. Visitor Pattern

2. Refactoring

Copies of these notes plus additional materials relating to this course can be found at:
http://mi.eng.cam.ac.uk/~er258/teaching

http://mi.eng.cam.ac.uk/~er258/teaching

Design Patterns (III) and Refactoring 1

Visitor Pattern

Problem

Sometimes the set of classes in a hierarchy has become well de-

fined and fixed, but the set of operations defined by the hierarchy

is still fluid.

For example we may have a simple text document composed hi-

erarchically of paragraphs, lines, words and characters (using the

composite design pattern) which we wish to prepare for printing

on any one of a large number of printing devices, or we may wish

to convert it into any one of a large number of word processing

formats.

Alternatively, we may have a class hierarchy representing the

various kinds of nodes present in the parse tree for computer

programs in some language. This representation of a computer

program could be used for investigating various methods of opti-

mising the code or compiling it for different architectures (cf the

expression evaluator in lecture 5).

In both of these contexts, the class hierarchy is well defined but

the interface that it must present is likely to change.

2 Engineering Part IIA: 3F6 - Software Engineering and Design

Solution 1

Simply add new functions as they are needed into each class in

the hierarchy.

ProgramNode

+compile_for_i386()
+compile_for_pIII()
+compile_for_p4()
+compile_for_athlon()
+compile_for_mips()
+...()

If

+compile_for...()

Assignment

+compile_for...()

FunctionCall

+compile_for...()

Pros: - simple for very simple systems

Cons: - a significant number of edits will be required

to add a new function

- the code that represents the new operation is

distributed between several different classes.

It would be preferable if all the code for the new function could

be in a single place. This would make it easier to implement,

test, and maintain.

Design Patterns (III) and Refactoring 3

Good Solution

Place a single function into each of the classes in the hierarchy

which allow them to be processed by an external object. The

latter contains all the code for processing objects belonging to

the class hierarchy.

This external object has to belong to a class from a hierarchy

which contains functions that know how to handle each class in

the original hierarchy. This structure allows us to create new

classes in the new hierarchy which can process objects from the

original hierarchy in a new way without further changing any of

the code in the original class hierarchy.

ProgramNode

+compile_for(c:Compiler)

If
-test: ProgramNode
-conditionalcode: ProgramNode
-elsecode: ProgramNode
+compile_for(c:Compiler)

Assignment

+compile_for(c:Compiler)

FunctionCall

+compile_for(c:Compiler)

Compiler

+do_if(node:If*)
+do_assignment(node:Assignment*)
+do_function_call(node:FunctionCall*)

i386Compiler

+do_if()
+do_assignment()
+do_function_call()

p4Compiler

+do_if()
+do_assignment()
+do_function_call()

mipsCompiler

+do_if()
+do_assignment()
+do_function_call()

c.do_if(this)

c.do_assignment(this) c.do_function_call(this)

uses operations specifically
provided by the If class

4 Engineering Part IIA: 3F6 - Software Engineering and Design

Design Pattern

This is an example of the Visitor pattern and is interesting for

two reasons. First, it provides an example of a class hierarchy in

which the subclasses conceptually correspond to actions rather

than kinds of objects present in the problem domain. Secondly,

it shows how polymorphic behaviour can be extracted from a

class hierarchy and implemented externally in an extendible and

flexible way.

This is called the Visitor pattern because an object from the

Compiler class hierarchy visits objects from the ProgramNode

hierarchy. The ProgramNodes don’t know anything specific about

their visitor, only that it is a kind of Compiler.

Thus this pattern allows us to generate a table of functions which

are selected at run time based on both the type of ProgramNode

and the type of Compiler.

Design Patterns (III) and Refactoring 5

Refactoring

Refactoring is the process of redesigning code so that its be-

haviour is unchanged but 0

• its structure is improved

• it is easier to read and understand

• overall code size is (usually) reduced

The key idea is to make a series of (provably correct) small

changes to the code, with continuous testing to detect errors as

soon as they occur. Note that the availability of comprehensive

regression tests is an essential prerequisite for refactoring.

The benefits of refactoring include:

• More efficient detection of bugs.

• Simpler addition of new functionality.1

• Easier and more effective maintenance.2

Refactoring is often repeated several times in the lifetime of a

software project.

0. Refactoring is in many ways a formalisation of normal sofware refinement.
1. The need for a new feature is a common motivation for refactoring.

There may be nothing wrong with the existing code until a new requirement arises.
2. Refactoring after the addition of new code will typically lower the total

cost of future maintenance.

6 Engineering Part IIA: 3F6 - Software Engineering and Design

Refactoring Tools

The original methodology of refactoring was originated in William

Opdyke’s PhD thesis and expounded further in the book

Refactoring: Improving the Design of Existing Code,

Martin Fowler, Booch, Jacobson and Rumbaugh, 1999

This book describes a set of manual approaches to refactoring.

There are two main reasons for refactoring

• cleaning up bad code - usually irreversible.

• changing design decisions - usually reversible since several

design options might be reasonable.

For cleaning up bad code, a variety of tools have been developed

(see http://www.refactoring.com)

These typically work by storing a library of patterns (bad smells)

and associated translations which will improve the code.

Design Patterns (III) and Refactoring 7

Bad Smells

Duplicated Code

Two or more chunks of code that are almost the same is a strong

indicator that a single function should be used from both places.

Long Functions

Break long functions into shorter more manageable chunks. Ex-

amples of duplicated code often occur in long functions.

Long Parameter List

Functions with more than 4 or so parameters should be avoided.

Bundle related parameters into structs or split the function into

several simpler functions.

Feature Envy

If a member function (operation) is more interested in the con-

tents of another class than its own, move it to the other class.

Switch Statements or Type Codes

These are often indicators that a class is really trying to represent

several discrete concepts and is therefore a candidate for using

polymorphism to achieve the varying behaviour.

The Fowler book lists many more bad smells.

8 Engineering Part IIA: 3F6 - Software Engineering and Design

Worked Example

Consider some software for managing a movie rental business. A

UML class diagram is given below.

Customer
-name: string
+statement(): string

Rental
+days_rented: int
+get_movie(): Movie
+get_days_rented(): int

Movie
-title: string
-price_code: int
+get_title(): string
+get_price_code(): int

 my_rentals
 *

movie
1

The method Customer::statement is very long indicating a

bad smell and a strong candidate for refactoring.

The first step is to extract part of the function and make it a

separate function.

Note that this example can also be seen as motivating good design

decisions (by presenting a bad design first and then modifying it

so that the design is cleaner and better).

Design Patterns (III) and Refactoring 9

string Customer::statement(){

float total_amount=0;

int frequent_renter_points=0;

list<Rental*>::iterator rentals;

string result = "Rental record for " + name;

// go through all the rentals

for(rentals = my_rentals.begin(); rentals!=my_rentals.end();rentals++){

Rental* each = *rentals;

// determine the amount for each rental

float this_amount=0;

switch(each->get_movie()->get_price_code()){

case Movie::REGULAR:

this_amount += 2;

if(each->get_days_rented() > 2){

this_amount += (each->get_days_rented() - 2) * 1.5;

}

break;

case Movie::NEW_RELEASE

this_amount += each->get_days_rented() * 3;

break;

case Movie::CHILDRENS

this amount += 1.5;

if(each->get_days_rented() > 3){

this_amount+=(each->get_days_rented()-3) * 1.5;

}

break;

}

total_amount += this_amount;

// add frequent renter points

frequent_renter_points++;

// add a bonus for two day new release rental

if((each->get_movie()->get_price_code() == Movie::NEW_RELEASE)

&& (each->get_days_rented()>1)) {

frequent_renter_points++;

}

// add figures for this rental to the statement

result += each->get_movie()->get_title();

result += " " + this_amount + endl;

}

// add footer lines to statement

result += "Amount owed is " + total_amount + endl;

result += "You earned " + frequent_renter_points + " frequent renter points"

return result;

}

10 Engineering Part IIA: 3F6 - Software Engineering and Design

Extracting a function

This is an example of the ”Extract Method” of refactoring. To

illustrate the methodical, step by step nature of the approach, we

will look at this in detail. The mechanics of applying the Extract

Method are:

1. Identify a section of code for extracting. We will extract the

code for determining the price for each rental.

2. Create a new member function and give it a good name. We

will call the function amount for().

3. Copy the section of code into the new function.

4. Find all the variables used in the section of code. In this

example, there are two: this amount and each. each is

not modified in the code section, so it can be passed in to

the new function as an argument. this amount is assigned

to within the code segment, so we can make this the return

value of the function.

5. Replace the original code segment with a call to the new

function

6. Compile and test

The new function now looks like:

Design Patterns (III) and Refactoring 11

float Customer::amount_for(Rental* each){

float this_amount=0;

switch(each->get_movie()->get_price_code()){

case Movie::REGULAR:

this_amount += 2;

if(each->get_days_rented() > 2){

this_amount += (each->get_days_rented() - 2) * 1.5;

}

break;

case Movie::NEW_RELEASE

this_amount += each->get_days_rented() * 3;

break;

case Movie::CHILDRENS

this amount += 1.5;

if(each->get_days_rented() > 3){

this_amount+=(each->get_days_rented()-3) * 1.5;

}

break;

}

return this_amount;

}

and the original code section is replaced by

float this amount = amount for(each);

As a class diagram we now have:

Customer
-name: string
+statement(): string
+amount_for(each:Rental*): float

Rental
+days_rented: int
+get_movie(): Movie
+get_days_rented(): int

Movie
-title: string
-price_code: int
+get_title(): string
+get_price_code(): int

 my_rentals
 *

movie
1

12 Engineering Part IIA: 3F6 - Software Engineering and Design

Moving a function

If we examine the new function further, we find that it does all its

work via the variable each and does not touch any of the member

variables in Customer at all. This is another bad smell (”feature

envy”). This suggests that the function should be moved from

Customer to Rental.

Moving a function from one class to another is a refactoring re-

ferred to as the ”Move Method”. The process is:

1. Declare a new function in the target class

2. Copy the code from the original into the new function.

3. All variables that were accessed via a pointer to the target

class in the original function can now be accessed directly.

In our example this means each->get movie() can be re-

placed simply with get movie().

If the code accesses some variables in the original class, they

can be passed into the function as arguments or a route can

be added to navigate back to the original class.

4. Compile the target class. This is a good chance to pick up

any variables accesses which have not been changed correctly.

5. Replace the body of the original function with a simple call

to the new function.

6. Compile and test.

Design Patterns (III) and Refactoring 13

We now have:

float Customer::amount_for(Rental* each){

return each->get_cost();

}

float Rental::get_cost(){

float this_amount=0;

switch(get_movie()->get_price_code()){

case Movie::REGULAR:

this_amount += 2;

if(get_days_rented() > 2){

this_amount += (get_days_rented() - 2) * 1.5;

}

break;

case Movie::NEW_RELEASE

this_amount += get_days_rented() * 3;

break;

case Movie::CHILDRENS

this amount += 1.5;

if(get_days_rented() > 3){

this_amount+=(get_days_rented()-3) * 1.5;

}

break;

}

return this_amount;

}

Customer
-name: string
+statement(): string
+amount_for(each:Rental*): float

Rental
+days_rented: int
+get_movie(): Movie
+get_days_rented(): int
+get_cost(): float

Movie
-title: string
-price_code: int
+get_title(): string
+get_price_code(): int

 my_rentals
 *

movie
1

14 Engineering Part IIA: 3F6 - Software Engineering and Design

The get cost function now uses information from Movie and

Rental so at first sight, the function could live in either place.

However, the presence of the switch statement based on the

price code stored in Movie is an indicator that the function

should be moved again so that we will have the opportunity to

perform another refactoring. If we want to move the function to

Movie, we shall have to take care of its use of get days rented()

which belongs to rental by passing in that value as an argument

to the moved function.

This gives us:

float Rental::get_cost(){

return get_movie()->get_cost(get_days_rented());

}

float Movie::get_cost(int days){

float this_amount=0;

switch(get_price_code()){

case REGULAR:

this_amount += 2;

if(days > 2){

this_amount += (days-2) * 1.5;

}

break;

case NEW_RELEASE

this_amount += days * 3;

break;

case Movie::CHILDRENS

this amount += 1.5;

if(days > 3){

this_amount+=(days-3) * 1.5;

}

break;

}

return this_amount;

}

Design Patterns (III) and Refactoring 15

Replacing switch with polymorphism

We can perform the same operation again on the code in the

original function that computes frequent renter points, resulting

in:

int Movie::get_points(int days){

int points = 1;

// add a bonus for two day new release rental

if((get_price_code() == NEW_RELEASE) && (days>1)) {

points++;

}

return points;

}

Customer
-name: string
+statement(): string

Rental
+days_rented: int
+get_movie(): Movie
+get_days_rented(): int
+get_cost(): float
+get_points(): int

Movie
-title: string
-price_code: int
+get_title(): string
+get_price_code(): int
+get_cost(days:int): float
+get_points(days:int): int

 my_rentals
 *

movie
1

Both get cost() and get points() contain code which is

conditional on the price code member in Movie. This is an-

other bad smell which can be eliminated by using polymorphism.

There are two possible solutions to this; We can create several

new subclasses of Movie, one for each movie type,

16 Engineering Part IIA: 3F6 - Software Engineering and Design

Movie
-title: string
+get_title(): string
+get_cost(days:int): float
+get_points(days:int): int

RegularMovie

+get_cost(days:int): float
+get_points(days:int): int

NewReleaseMovie

+get_cost(days:int): float
+get_points(days:int): int

ChildrensMovie

+get_cost(days:int): float
+get_points(days:int): int

or we can use the state pattern:

Movie
-title: string
+get_title(): string
+get_cost(days:int): float
+get_points(days:int): int

PriceCode

+get_cost(days:int): float
+get_points(days:int): int

Regular

+get_cost(days:int): float
+get_points(days:int): int

NewRelease

+get_cost(days:int): float
+get_points(days:int): int

Childrens

+get_cost(days:int): float
+get_points(days:int): int

In this case, the state pattern is the better design choice because

it is likely that a Movie will change state from being a new release

movie to a regular movie after it has been on the shelves for a

year.

