
3F6 - Software Engineering and Design

Handout 7

Design Patterns (II)
With Markup

Ed Rosten

Contents

1. Observer Pattern

2. Abstract Factory Pattern

3. Proxy Pattern

Copies of these notes plus additional materials relating to this course can be found at:
http://mi.eng.cam.ac.uk/~er258/teaching

http://mi.eng.cam.ac.uk/~er258/teaching

Design Patterns (II) 1

Observer Pattern

Problem

We want our drawing editor to be able to store and display

coloured objects and we want to support multiple methods of

choosing the pen and fill colours for a shape in the drawing.

These include typing in values for Red, Green and Blue, select-

ing a colour from a palette, or using colour sliders.

Multiple interfaces for selecting a colour may be visible on the

screen simultaneously and we want to arrange the software so

that as the user makes a choice using one of the interfaces (e.g.

by clicking on a colour in the palette), all the other interfaces

update their displays to reflect the current choice of colour.

Colour Selector

Red 255

Green 128

Blue 0

Colour Selector

2 Engineering Part IIA: 3F6 - Software Engineering and Design

Solution 1

Add code into each colour selection method to update all the

other displays.

Pros: - simple and efficient for small systems

Cons: - since every interface must link to every other

interface, the code for all interfaces must be

updated when a new interface (eg a colour wheel)

is introduced.

Quadratic growth!

Design Patterns (II) 3

Solution 2

Delegate the updating task by moving the code that updates the

colour selectors into the Colour class.

Pros: - coding and maintenance simplified

linear growth

Cons: - clutters Colour objects with update code

- ‘Leaky’ design

- Colour type no longer suitable for declaring

general purpose colour variables

4 Engineering Part IIA: 3F6 - Software Engineering and Design

Solution 3

Separate out the Colour class from the class that handles updat-

ing the displays i.e. introduce an intermediary into the previous

solution which keeps Colour simple and allows the software to

still handle the process of notifying the selection methods to up-

date themselves.

Pros: - Colour class decluttered and clean separation

between representing colours and updating

the displays

Cons: - ColourHandler still needs explicit references

to every colour interface object in order to

update it.

Design Patterns (II) 5

Good Solution

We can remove this dependency by creating an abstract base

class to represent the concept of a colour selector. The colour

handler class can then merely maintain a list of colour selectors

without worrying about what kind of colour selector they are.

This leads to the following behaviour when the user clicks on a

colour in the colour palette:

cpalette:ColourPalette cslider: ColourSlider ctext: ColourText ch:ColourHandler c:Colour

click_on()
set_colour()

set_colour()

update()

update()

update()

6 Engineering Part IIA: 3F6 - Software Engineering and Design

Code Example

class ColourSelector {

public:

virtual void update(Colour c)=0;

ColourHandler* ch;

};

// ---

class ColourHandler {

public:

set_colour(Colour c);

add_selector(ColourSelector* s);

remove_selector(ColourSelector* s);

private:

Colour * col;

set<ColourSelector*> selectors;

};

ColourHandler::set_colour(Colour c){

col->set_colour(c);

set<ColourSelector>::iterator iter;

for(iter = selectors.begin();

iter != selectors.end(); iter++){

(*iter)->update(c);

}

}

ColourHandler::add_selector(ColourSelector* s){

s->ch=this; // assign the selector a colour handler

selectors.insert(s); // and record selector

}

Design Patterns (II) 7

class ColourPalette : public ColourSelector {

public:

virtual void update(Colour c);

void click_on(int i);

private:

int current_cell;

vector<Colour> palette;

};

ColourPalette::update(Colour c){

// update palette colour selector with current colour

if (palette[current_cell]==c) highlight(current_cell);

etc

}

ColourPalette::click_on(int i){

current_cell = i;

ch->set_colour(palette[i]);

}

8 Engineering Part IIA: 3F6 - Software Engineering and Design

The Observer Design Pattern

This is also sometimes known as the Model-View-Controller (MVC)

pattern. The key idea is that it separates the model (or docu-

ment (or colour)) from the user interface display of that state.

The model only needs to know that it has a set of observers, not

the details of each observer.

Subject

+Attach(o:Observer)
+Detach(o:Observer)
+Notify()

Observer

+Update()

ConcreteSubject
+subjectstate:
+GetState()
+SetState()

ConcreteObserver

+Update()

observers
*

 subject
 1

for each o in observers {
 o->Update();
}

s = subject->GetState();
display(s);

Disadvantages

This pattern can lead to a large amount of computational over-

head. For example consider gradually moving a slider bar in the

colour selector example. This will generate several set colour

calls to the ColourHandler which in turn will generate n times

that many update calls to the n colour selectors.

Design Patterns (II) 9

Abstract Factory Pattern

Problem

By using the Observer pattern, we are able to separate the rep-

resentation (underlying model) from the user interface. Further,

the model does not need to know anything about the user inter-

face (indeed, we could use this approach to design our application

to run in batch mode without ever invoking a user interface).

For example, when using a Unix machine we create X windows

interface objects unless the system is running Gnome in which

case we create GTK+ objects. If we are using a Windows ma-

chine, we create MFC based interface objects.

But how do we create these platform specific interfaces?

10 Engineering Part IIA: 3F6 - Software Engineering and Design

Solution 1

At every place in the code where we create a graphical interface

component, we test for the machine type and create the appro-

priate object:

// create a colour palette selector

#ifdef __UNIX__

#ifdef __GTK__

GTK_ColourPalette* p = new GTK_ColourPalette;

#else

XW_ColourPalette* p = new XW_ColourPalette;

#endif

#else

#ifdef __WINDOWS__

Win_ColourPalette* p = new Win_ColourPalette;

#else

#error unknown system type

#endif

#endif

Pros: - very simple for small problems

Does this sound familiar?

Cons: - since the code to handle multiple platforms is

strewn throughout the whole program, an

excessive amount of work will be needed to

support a new platform

- a system of any complexity would be virtually

unmaintainable

Design Patterns (II) 11

Solution 2

We could localise the behaviour by deriving the classes GTK ColourPalette,

XW ColourPalette and Win ColourPalette from a common

base class ColourPalette. Then we can define a single function

to create the various kinds of colour palette.

ColourPalette

+update()
+click_on()

GTK_ColourPalette

+update()

Win_ColourPalette

+update()

XW_ColourPalette

+update()

// create a ColourPalette
ColourPalette* create_colourpalette(){
#ifdef __UNIX__
#ifdef __GTK__
 return new GTK_ColourPalette();
#else
 return new XW_ColourPalette();
#endif
#else
#ifdef __WINDOWS__
 return new Win_ColourPalette();
#else
#error unknown interface type
#endif
}

Pros: - some localisation of platform dependent code

achieved since most of the system will

interact only with the platform independent

ColourPalette class

Cons: - still requires #ifdef code for every

widget create routine

- still difficult to maintain

We can improve it further by putting the functions in different

files. But this becomes an ad-hoc implementation of...

12 Engineering Part IIA: 3F6 - Software Engineering and Design

Good Solution

We can collect all the platform dependent code into a set of

classes, one for each platform, derived from a common base class.

Each of the platform specific classes knows how to create all the

user interface components for that platform and the base class

provides virtual functions for creating abstract components:

InterfaceFactory

+create_ColourPalette(): ColourPallette*
+create_Canvas(): Canvas*
+create_Scrollbar(): Scrollbar*
+create_Menu(): Menu*

GTK_InterfaceFactory

+create_ColourPalette(): ColourPallette*
+create_Canvas(): Canvas*
+create_Scrollbar(): Scrollbar*
+create_Menu(): Menu*

XW_InterfaceFactory

+create_ColourPalette(): ColourPallette*
+create_Canvas(): Canvas*
+create_Scrollbar(): Scrollbar*
+create_Menu(): Menu*

Win_InterfaceFactory

+create_ColourPalette(): ColourPallette*
+create_Canvas(): Canvas*
+create_Scrollbar(): Scrollbar*
+create_Menu(): Menu*

return new GTK_Menu;

return new XW_Menu;

return new Win_Menu;

This approach allows us to eliminate all of the platform depen-

dent code (all the #ifdefs) except for a single instance where

we decide which kind of InterfaceFactory to make.

Design Patterns (II) 13

The Abstract Factory Design Pattern

This pattern separates the choice of product line from the choice

of producer by creating abstract concepts for both. This allows

new producers to be created very easily since only a new subclass

of AbstractFactory is needed to create the new set of products

(e.g. user interface components for MacOS).

AbstractFactory

+CreateProduct1(): AbstractProduct1

ConcreteFactoryA

+CreateProduct1()

ConcreteFactoryB

+CreateProduct1()

AbstractProduct1

ConcreteProduct1B

ConcreteProduct1A<< instantiate >>

<< instantiate >>

Disadvantages

Although creating new factories is easy, creating new product

lines is harder - the interface to AbstractFactory and every

subclass of it needs to be updated to include a function to con-

struct the new kind of object.

Also, this approach results in large numbers of virtual functions

in the code since nothing really knows the type of objects it

is dealing with. This can result in a significant performance

degradation if such calls are made frequently.

14 Engineering Part IIA: 3F6 - Software Engineering and Design

Proxy Pattern

Problem 1

Large documents in a drawing editor containing many images

may result in very large files on disk that take a long time to

load (e.g. a large Powerpoint file).

Not all images will be needed immediately and could be loaded

on demand when they are needed. But what can be used in place

of the image until it has been loaded?

Good Solution

Create a class that provides exactly the same interface as Image

and use that class to stand in for real images:

Image

+draw()

ImageProxy
-is_loaded: bool
-filename: string
+draw()

RealImage

+load()
+draw()

im
0..1

if(!is_loaded){
 im = new RealImage;
 im->load(string);
}
im->draw();

Design Patterns (II) 15

Problem 2

We may wish to embed spreadsheets into the drawing editor.

These may be embedded so that subsequent users of the editor

are restricted from changing some or all of the values in the

spreadsheet.

Same Good Solution

We can create a class that provides exactly the same interface

as the spreadsheet, but checks to see if the user is allowed to

change the value of a cell before calling the function in the real

spreadsheet.

SpreadSheet

+draw()
+change_cell(x:int,y:int,val:float)

SpreadSheetProxy
-is_loaded: bool
-filename: string
+validate_cell(x:int,y:int): bool
+draw()
+change_cell(x:int,y:int,val:float)

RealSpreadSheet

+draw()
+change_cell()

ss
1

ss->draw();

if(validate_cell(x,y)){
 ss->change_cell(x,y);
}

16 Engineering Part IIA: 3F6 - Software Engineering and Design

Problem 3

We may have a service running on a remote machine which we

wish to access from a drawing editor. For example, we may have

a computer which can access a weather satellite and can serve

satellite images to us. In this case, we want the document to

always display the latest satellite image and to update itself at

regular intervals.

Same Good Solution Yet Again

The same abstract base class is used in both the weather satellite

program and the drawing editor program. In the satellite pro-

gram we use an object of one subclass and in the drawing editor

we use an object of a different subclass. The object in the draw-

ing editor pretends to be exactly the same as the object in the

weather program, but fulfills its functionality by contacting the

real object over the computer network and receiving the results

of the operations in the same way.

WeatherImageProxy
+hostname: string
+port_no: int
+get_image()

WeatherImage

+get_image(): Image

RealWeatherImage

+get_image()

rwi
1

find the ip address of the
machine called "hostname"
and contact it on port "port_no"
and convert the returned data
into an image.

Design Patterns (II) 17

The Proxy Design Pattern

This pattern is used in three distinct ways known as virtual,

security and remote proxies (corresponding to the three examples

above, respectively).

The generic idea is that the software contains a class that pre-

tends to be another class and objects of the proxy class carry out

their functionality by contacting the real object (whether that is

on disk, in the same program space or on another computer on

the other side of the planet.

The last version of this pattern, the remote proxy is the key

technique used in CORBA and will be discussed in more detail

in later lectures.

Disadvantages

A minor problem is that using proxies can lead to confusion over

identity. We may have a real object r and a proxy for that object

p but if we test (p==r) we will get false. Similarly two proxies

for the same real object are distinct objects. It is, however,

possible to design additional code to avoid these problems.

