
3F6 - Software Engineering and Design

Handout 6

Design Patterns (I)
With Markup

Ed Rosten



Contents

1. Decorator Pattern

2. State Pattern

3. Composite Pattern

Copies of these notes plus additional materials relating to this course can be found at:
http://mi.eng.cam.ac.uk/~er258/teaching

http://mi.eng.cam.ac.uk/~er258/teaching


Design Patterns (I) 1

Design Patterns

Software systems can be very large and very complex. How-

ever, we often find the same architectural structures occurring

repeatedly (with subtle variations), created in response to com-

monly recurring problems. These solutions can be identified and

recorded as design patterns.

This course will look at a few of the most common design patterns

with two aims:

1. To explain how to use these specific patterns in software de-

signs and in communicating about software that uses them.

2. To introduce the language of design patterns and illustrate

the more general benefits from thinking about software con-

struction in this way.

A more comprehensive set can be found in

Design Patterns: Elements of Reusable Object-Oriented

Software, Erich Gamma et al, Addison-Wesley, 1998

which describes 23 design patterns in detail.



2 Engineering Part IIA: 3F6 - Software Engineering and Design

The Structure of Patterns

Each pattern is described using a standard format:

Problem: outline some specific functionality that we would like

our software to provide.

Bad solutions: explore some ways of providing this function-

ality and discuss their limitations.

Good Solution: present a preferred solution based on a design

pattern.

Code Example: an example of what the design solution looks

like when coded in C++.

Design Pattern: discuss the design pattern which is the gen-

eral principle underlying the good solution and its applicability

to other situations. This will be accompanied by UML showing

the generic design pattern.

Disadvantages: discuss the shortcomings the design pattern

and why you might not want to use it for certain cases.

To illustrate each of these aspects, the Drawing Editor example

will be used.

This is the approach used to motivate and explain class derivation and polymorphism (virtual

functions). They seem obvious now because they are built in to languages like C++ but earlier

generations of C programmers might have regarded them as design patterns.



Design Patterns (I) 3

Decorator Pattern

Problem

Suppose our drawing editor allows us to include many sorts of

shapes including rectangles, ellipses, text, equations, pictures etc.

Shape

+draw()
+move()
+fill()

Rectangle Ellipse Text Equation Picture

Now we want to introduce a facility into the editor to allow frames

to be added to arbitrary objects. For example we might want to

put a picture frame around an image, or we might want to frame

an equation or some text in a simple box.

Section 1

This is text inside a
text box that is going
to get very full after a
while.  I am then
going to make the text
so small that you can
hardly see it.  Really it
would have been
better to paste in some
real text.

Text

Section 1

This is text inside a
text box that is going
to get very full after a
while.  I am then
going to make the text
so small that you can
hardly see it.  Really it
would have been
better to paste in some
real text.

Textin a frame



4 Engineering Part IIA: 3F6 - Software Engineering and Design

Solution 1

Since we want to be able to add frames to objects of all types, we

could add an attribute into the Shape class to specify the type

of frame the object has (if any).

Shape
-frame_type: int
+draw()
+move()
+fill()

Pros: - simple and adequate for case where we only

want to add one special attribute to shapes

Cons: - wastes storage since all objects contain all attribute data

- the code itself will become clumsy since, for example,

the draw method will need to have a case switch

for each of the possible frame types

void Shape::draw() {

switch(frame_type) {

case NONE:

break;

case SIMPLE_FRAME:

draw_simple_frame();

break;

...

}

}

void Text::draw() {

Shape::draw();

// render text

}



Design Patterns (I) 5

Solution 2

An alternative would be to derive new classes such as Fr Rectangle,

Fr Picture, Fr Equation etc. to provide framed versions of each

shape class:

+draw()
+move()
+fill()

Shape

Rectangle Ellipse Text Equation Picture

Fr_Rectangle Fr_Ellipse Fr_Text Fr_Equation Fr_Picture

Pros: - framing can be restricted to particular shapes

- efficient use of storage since frame data is

only allocated when actually needed

Cons: - huge proliferation in classes

- hard to turn decorations on and off at run-time

Note that the framed versions will inherit exactly the same inter-

face as their parents. This is important since it is essential that

any client using any shape object sees an identical interface.



6 Engineering Part IIA: 3F6 - Software Engineering and Design

Good Solution

A much better way to solve this problem is to add a single new

subclass of Shape called FramedShape. Each FramedShape will

have a pointer to a Shape object which is the shape contained

in the frame.

S h a p e

+ d r a w ( )

+ m o v e ( )

+ f i l l ( )

R e c t a n g l e

E l l i p s e

T e x t

E q u a t i o n

P i c t u r e

F r a m e d S h a p e

- f r a m e _ t y p e :  i n t

+ d r a w ( )

+ m o v e ( )

+ f i l l ( )

- d r a w _ f r a m e ( )

c o n t e n t s - > d r a w ( ) ;

d r a w _ f r a m e ( ) ;

+   c o n t e n t s

  1

The addition of this extra class allows us to frame any kind of

shape, simply by creating a FramedShape object and making its

contents point to the Shape object that we want to frame.

We can even create a frame around a FramedShape (see example

in the object diagram below!).



Design Patterns (I) 7

This software architecture will give rise to run-time structures

similar to that shown in the following object diagram:

adrawing: DrawingEditor

my_shapes[]

r1: Rectangle

p1: Picture

f1: FramedShape p2: Picturecontents  

e1: Ellipse

f2: FramedShape q1: Equationcontents  

q2: Equation

f3: FramedShape f4: FramedShape

p1: Picture

contents  

 contents

Note that the picture p1 is embedded in two frames.



8 Engineering Part IIA: 3F6 - Software Engineering and Design

Code Example

class Shape {

public:

virtual void draw()=0;

virtual void move(int dx, int dy)=0;

virtual void fill(Colour c)=0;

};

class FramedShape : public Shape {

public:

virtual void draw();

virtual void move(int dx, int dy);

virtual void fill(Colour c);

private:

void draw_frame();

Shape *contents;

int frame_type;

};

void FramedShape::draw(){

contents->draw(); // draw the contents of the frame

draw_frame(); // draw the frame

}

The Decorator Design Pattern

Provides a way of adding optional functionality (ie decoration)

to all classes in a hierarchy without changing the code for either

the base class or any of the subclasses.

Using this pattern, multiple decorations can be applied to an

object (e.g. we can add a picture frame and scrollbars (in either

order) to a picture in the drawing editor). If there are several

different kinds of decoration that we want to be able to use,



Design Patterns (I) 9

we can derive a number of classes from the Decorator class to

handle these separate kinds of added functionality.

Component

+Operation()

ComponentType1

+Operation()

ComponentType2

+Operation()

    Decorator    

+Operation()

  component
  1

component->Operation();
ConcreteDecoratorA
-Added_State: 
+Operation()

ConcreteDecoratorB
-Added_State: 
+Operation()
+AddedBehaviour()

Decorator::Operation();
AddedBehaviour();

Client

Disadvantages

If there are not too many kinds of added functionality and they

appear fairly commonly, it may be more convenient to use so-

lution 1 (above). The decorator pattern can make it hard to

resolve the identity of the objects we are dealing with since the

decorator is a distinct object from the component it decorates. In

a running system, this can result in long chains of small objects

that point to each other, making the software hard to debug.



10 Engineering Part IIA: 3F6 - Software Engineering and Design

State Pattern

Problem

Suppose that the number of frame types available for framing

shapes in the drawing editor becomes very large. The draw frame()

function in FramedShape will become very complicated and dif-

ficult to maintain (cf Solution 1 for the Decorator Pattern).

FramedShape
-frame_type: int
-frame_width: int
-frame_height: int
+draw()
+move()
+fill()
+draw_frame()

if(frame_type == plain){
  // draw a plain frame
}
if(frame_type == deco){
  // draw a deco frame
}
if(frame_type == baroque){
  // do the baroque thing
}

Solution 1

Introduce a class hierarchy to derive the different kinds of frame

required from FramedShape. The attribute information that is

common to all types of frame (i.e. frame width and frame height)

continues to be stored in the base class. In this diagram it is

shown as protected (the ”#” symbol) which means that it is

available to the subclasses of FramedShape but private with re-

spect to the outside world.

Pros: - enables new frames to be introduced without

disturbing existing code

- easy to maintain code

Cons: - very difficult to change frames at runtime



Design Patterns (I) 11

Consider trying to convert a deco frame into a baroque frame:

1. Construct a BaroqueFramedShape object.

2. Copy all the state information (i.e. frame width and frame height)from

the DecoFramedShape object into the BaroqueFramedShape

object.

3. Find every pointer in the entire system that points to the

DecoFramedShape object and change it to point to the BaroqueFramedShape

object instead.

4. Delete the DecoFramedShape object.

Step 3 above is typically very difficult to achieve.



12 Engineering Part IIA: 3F6 - Software Engineering and Design

Good Solution

A better way to achieve this is to create a stand-alone class hier-

archy derived from FrameType to represent frame types and to

alter FramedShape so that it has-a FrameType. In this way, we

can simply destroy one kind of FrameType object and replace

it with another when we want to change frame types without

having to replace the FramedShape object.

FrameType

+draw_frame()

PlainFrame

+draw_frame()

DecoFrame

+draw_frame()

BaroqueFrame

+draw_frame()

FramedShape
-frame_width: int
-frame_height: int
+draw()
+move()
+fill()
+draw_frame()

frametype  
1  

frametype->draw_frame();

Note that the width and height must be passed from FramedShape to
FrameType via the call

frametype->draw frame(frame width,framed height)

this is not shown in the above. Also, these variables become private

again rather than protected



Design Patterns (I) 13

Code Example

class FrameType {

public:

virtual void draw_frame(int width, int height)=0;

};

class PlainFrame : public FrameType {

public:

virtual void draw_frame(int width, int height);

}

class FramedShape : public Shape {

public:

// all the other stuff

void draw_frame();

private:

FrameType* frametype;

int frame_width;

int frame_height;

};

void FramedShape::draw_frame() {

frametype->draw_frame(frame_width, frame_height);

}



14 Engineering Part IIA: 3F6 - Software Engineering and Design

The State Design Pattern

The state pattern is useful for dynamically changing some aspect

of the behaviour of an object without destroying the object itself

and replacing it with a new one.

State

+behaviour()

State1

+behaviour()

State2

+behaviour()

Context
-common state: 
+Operation()

current_state  
1  

current_state->behaviour();

Client

Disadvantages

By extracting state dependent behaviour into a separate class, it

becomes impossible to override this behaviour by deriving from

the Context class. This means that the behaviour becomes fixed

for users of the Context class.



Design Patterns (I) 15

Another example of using the State Pattern

In the drawing editor example, the state is switched explicitly by

the user.

The state pattern is also useful for implementing state machines

where the behaviour changes at each state transition.

For example, software to manage (e.g. to manage TCP connec-

tions):

TCPConnection

+Change_State(s:TCPState*)
+Open()
+Close()
+Acknowledge()

TCPState

+Open()
+Close()
+Acknowledge()

TCPEstablished

+Open()
+Close()
+Acknowledge()

TCPListen

+Open()
+Close()
+Acknowledge()

TCPClosed

+Open()
+Close()
+Acknowledge()

  connection
  1

current_state  
1  

current_state->Open();

// code to close

connection->Set_State(new TCPClosed);

Note that in this example the state objects determine the next

state themselves and explicitly invoke transitions to the next

state.



16 Engineering Part IIA: 3F6 - Software Engineering and Design

Composite Pattern

Problem

We want our drawing editor to support grouping and ungrouping

operations so that a number of shapes can be collected together

and treated as a single entity.

Solution 1

We could add a group member field into Shape to indicate which

group each shape belongs to (using the number -1 to indicate that

the object is not in any group).

Shape
-group_id: int
+draw()
+move()
+get_bbox(): BBox

-1 means not
in a group

Pros: - simple

Cons: - cannot support nested groups



Design Patterns (I) 17

Good Solution

A better approach is to introduce a new class ShapeGroup to

manage a group of shapes. This new class is a subclass of Shape

and so it preserves the standard Shape class interface.

The ShapeGroup class provides a means by which several shapes

can be grouped together into a single entity which behaves in the

same way as a single shape.

Most of the ShapeGroup class methods are implemented simply

by calling the same function for each of its constituent shapes.

Computing the bounding box is a only little more complicated

and can be done in a similar manner.

Shape

+draw()
+move()
+get_bbox(): BBox

ShapeGroup

+draw()
+move()
+get_bbox(): BBox
+add_shape()
+remove_shape()

  contents
  *

Rectangle

Ellipse

Picture

Equation

for each c in contents{
  c->draw();
}

find the min and max of x and y
over all c in contents



18 Engineering Part IIA: 3F6 - Software Engineering and Design

Code Example

class ShapeGroup : public Shape {

public:

virtual void draw();

virtual void move(int dx, int dy);

void add_shape(Shape *s);

void remove_shape (Shape* s);

private:

list<Shape*> contents;

};

void ShapeGroup::draw(){

for(list<Shape*>::iterator iter = contents.begin();

iter != contents.end(); iter++) {

(*iter)->draw();

}

}

void ShapeGroup::add_shape(Shape *s){

contents.push_back(s);

}



Design Patterns (I) 19

The Composite Design Pattern

Provides a means of grouping together several objects of type T

such that the grouped object is also of type T.

Component

+Operation()

for each c in children {
  c->Operation();
}

Component1

+Operation()

    Composite    

+Operation()
+Add()
+Remove()
+GetChildren()

  children
  *

Component2

+Operation()

Client

Disadvantages

The composite pattern is very powerful, but can sometimes be

too general. For example, it is difficult to restrict the objects

which can be included in the composite group.

Since the Composite class usually has to be extended to provide

access to the individual group members (as shown), client code

must be able to distinguish between composite objects and non-

composite objects.


