
3F6 - Software Engineering and Design

Handout 5

Object Oriented Design
With Markup

Ed Rosten

Contents

1. Key Ideas and Guiding Principles

2. Example 1: An Expression Parser

3. Example 2: War Game Simulator

Copies of these notes plus additional materials relating to this course can be found at:
http://mi.eng.cam.ac.uk/~er258/teaching.

Object Oriented Design 1

Object-oriented design

Key Ideas:

• Encapsulation:

use classes to hide implementation details and provide well-

defined interfaces.

• Composition:

use objects as building bricks to construct complex systems

from more manageable sub-components.

Focus on has-a relationship.

• Inheritance:

use class inheritance to extend and re-use existing objects.

Focus on is-a relationship.

• Polymorphism:

use virtual functions to allow related (but not identical) ob-

jects to be treated as a homogeneous group.

2 Engineering Part IIA: 3F6 - Software Engineering and Design

Guiding principles

• Ensure a clear specification.

• Model the core data structures first.

• Group the required functionalities into logically distinct mod-

ules.

• Design with re-use and extensibility in mind.

• Every class should be responsible for itself.

• Make class interfaces as secure as possible.

• Design for error handling from the outset.

Object Oriented Design 3

An arithmetic expression evaluator

Consider the design of an evaluator for simple arithmetic expres-

sions:

Evaluator
12 * (13+5)
 216

Step One Refine the specfication:

1. What constitutes a legal expression?

This is specified by the syntax rules shown below. All opera-

tors have equal precedence and no specific evaluation order.

A typical application of these rules is shown also in the form

of a parse tree.

2. Are there any design constraints?

Yes, the design should include an explicit internal representa-

tion of the expression in memory to allow additional functions

to be added (eg to allow the structure of expressions to be

displayed).

3. What should happen on illegal inputs?

An error message should be displayed which indicates the

type of error and the point in the expression at which it

occurs.

4 Engineering Part IIA: 3F6 - Software Engineering and Design

Expression Syntax

expr

=> term [op
 expr
]

term
=> numb | "("
expr
 ")" | "-" term

op
 => "+" | "-" | "*" | "/"

numb
 => digit [numb]

Parse tree of a typical expression

term

term
 term

expr

numb

numb
 numb

12
 13
 5
*

op

+

op

(
)

expr

term

expr

expr

[NB solid arrows translate into pointers to objects in the follow-

ing design]

Object Oriented Design 5

Step Two Design the core data structures:

To support the display of expression structure, associate each

node of the parse tree with an object. To support polymorphic

processing of tree nodes, define an abstract class Node and then

derive classes for Expressions, Terms, and Numbers from it. Note

that a class for operators is not needed since they can always be

stored with the parent expression.

Node

+
getValue
:
int

Expr

- op :
SymbolType

+
getValue
:
int

Numb

-
num
 :
int

+
getValue
:
int

Term

-
neg
 : Boolean

+
getValue
:
int

lTree

1

rTree

1

tree

1

 x=
lTree
->
getValue
();

 if (op is not null) {

 y=
rTree
->
getValue
();

 switch(op) {

 case + : x += y;

 case - : x -= y;

 case * : x *= y;

 case / : x /= y;

 }

 }

 return x;

 x=tree->
getValue
();

 if (
neg
) return -x;

 return x;

 return
num
;

Implementation of getValue() illustrates the ”Every class should

be responsible for itself” principle.

6 Engineering Part IIA: 3F6 - Software Engineering and Design

Step Three Define the auxiliary interfaces:

Here the main issue is the design of the input processing. The

conventional approach is to assume the existence of a scanner

which reads the input character sequence and converts it to a

sequence of logical symbols:

12 * (13 + 5)

num
 mult
 lbrak
num
 plus
num
rbrak

(12)
 (13)
 (5)

The scanner maintains a current symbol and the interface con-

sists of calls to read the current symbol and get the next symbol:

Scanner

-cursym:Symbol;

+
getNextSym
();

+
getCursym
():Symbol;

Symbol

- type : SymbolType

- value : int

cursym

1

where the SymbolType is a simple enumeration of all the possible

symbol types eg

enum SymbolType {num,lbrak,rbrak,plus,minus}

Object Oriented Design 7

Step Four Construction of the core data structures

Exploit the ”Every class should be responsible for itself” principle
again:

// expr => term [op expr]

Expr::Expr(Scanner * s)

{

lTree = new Term(s); rTree = NULL;

if (s->getCurSym() is operator) {

op = s->getCurSym().Op() // store the actual op

s->getNextSym();

rTree = new Expr(s);

}

}

// term => "(" expr ")" | "-" term | number

Term::Term(Scanner * s)

{

neg = false; tree = NULL;

if (s->getCurSym() is lbrak) {

s->GetNextSym();

tree = new Expr(s);

// check current sym is rbrak

s->GetNextSym();

}else if (s->getCurSym() is minus) {

s->GetNextSym(); neg = true;

tree = new Term(s);

}else {

// check current sym is number

tree = new Numb(s);

}

}

Note that a scanner object is passed to each constructor.

8 Engineering Part IIA: 3F6 - Software Engineering and Design

The basic design of the expression parser is now complete. All

that remains is some implementation detail. A full working pro-

gram can be inspected at

http://mi.eng.cam.ac.uk/~er258/teaching.

Some points to note about this design.

• Given a very precise definition of the inputs via formal gram-

mar rules and their corresponding parse trees, it is straight-

forward to map syntax nodes to derived classes. Each derived

class is responsible for parsing its own syntax rule.

• Polymorphism simplifies the processing of syntax nodes.

• The object oriented design makes the addition of extra func-

tionality straightforward. Consider the requirement to print

out the structure - this is easily achieved by adding simple

print routines to each node type.

• The definition of the input scanner as a class object makes

it easy to extend to other input sources (eg a file) without

changing the rest of the program.

• Separation of the scanner from the parser via a secure inter-

face makes it easy to delegate implementation of the scanner

and parser to different members of a team.

Object Oriented Design 9

War Game Simulator

A company makes and sells computer war games. The figure

below shows a UML class diagram which describes part of the

software which is responsible for the artificial intelligence of com-

puter controlled soldiers in the game.

S o l d i e r

 l o ca t i on
 nex t_ac t i v i t y : Ac t i v i t y *

 p e r f o r m _ a c t i o n ()
 c a n _ s e e _ e n e m y () : S o l d i e r *
 m o v e ()
 f i r e _ g u n (t a r g e t : S o l d i e r *)

A c t i v i t y

 p e r f o r m ()

P a t r o l

 p e r f o r m ()

A t t a c k

 p e r f o r m ()

p e r f o r m () {
 s o l d i e r - > m o v e () ;
 i f (s o l d i e r - > c a n _ s e e _ e n e m y () ! = 0) {
 r e t u rn new A t t ack () ;
 }e l se
 re tu rn 0 ;
}

p e r f o r m () {
 S o l d i e r * e n e m y =
 s o l d i e r - > c a n _ s e e _ e n e m y () ;
 i f (enemy != 0) {
 s o l d i e r - > f i r e _ g u n (e n e m y) ;
 re tu rn 0 ;
 } e lse {
 r e tu rn new Pa t ro l () ;
 }
}

p e r f o r m _ a c t i o n () {
 n e x t _ a c t i v i t y = c u r r e n t _ a c t i v i t y - > p e r f o r m () ;
 i f (nex t_ac t i v i t y != 0) {
 de le te cu r ren t_ac t i v i t y ;
 cu r ren t_ac t i v i t y = nex t_ac t i v i t y ;
 nex t_ac t i v i t y=0 ;
 }
}

c u r r e n t _ a c t i v i t ys o l d i e r

1 1

c a n _ s e e _ e n e m y ()
r e t u r n s a p o i n t e r t o t h e e n e m y
s o l d i e r i f o n e c a n b e s e e n o r 0
i f t h e r e n o e n e m y i n s i g h t

10 Engineering Part IIA: 3F6 - Software Engineering and Design

What does this diagram say?

There are four classes shown in the diagram: Soldier, Activity,

Patrol and Attack.

Each Soldier has an activity called current activity and each ac-

tivity has a soldier (i.e. a 1:1 relationship). Patrol and Attack

are derived from (or subclasses of) Activity. Activity is abstract

and hence each activity is either a Patrol or an Attack.

The separation of Soldiers from the Activities that they perform

allows both to be refined and extended independently. This is a

familiar design pattern called the state pattern which we will see

more of later.

Object Oriented Design 11

Additional Functionality

It is now decided that there will be two kinds of soldier within

the game: Corporal and Sergeant. A Corporal will continue to

follow the existing behaviour of a Soldier in the current game.

A Sergeant’s behaviour will differ so that when they are on pa-

trol and see the enemy, a Sergeant will engage in a new kind of

activity: “Take Cover”.

Assuming that an additional function called hide() which im-

plements the act of taking cover has been added to the Soldier

class, what software changes are required to support this new

behaviour?

Solution

1. Add a new class Take Cover derived from Activity just

like Patrol and Attack.

2. There are now two kinds of soldier. This implies that the

Soldier class needs to be replaced by a class hierarchy in

which Corporal and Sergeant are derived from Soldier.

3. There should also be a virtual function in this hierarchy to

embody the differing behaviours. This differing behaviour is

the state that the soldier should move into when an enemy is

seen thus the virtual function should return this new state.

12 Engineering Part IIA: 3F6 - Software Engineering and Design

S o l d i e r

 l o ca t i on
 nex t_ac t i v i t y : Ac t i v i t y *

 p e r f o r m _ a c t i o n ()
 c a n _ s e e _ e n e m y () : S o l d i e r *
 m o v e ()
 f i r e_gun ()
 h i de ()
 e n e m y _ s e e n _ a c t i o n () : A c t i v i t y

A c t i v i t y

 p e r f o r m ()

P a t r o l

 p e r f o r m ()

A t t a c k

 p e r f o r m ()

C o r p o r a l

 e n e m y _ s e e n _ a c t i o n () : A c t i v i t y

S e r g e a n t

 e n e m y _ s e e n _ a c t i o n () : A c t i v i t y

e n e m y _ s e e n _ a c t i o n () {
 r e t u r n n e w T a k e _ C o v e r () ;
}

e n e m y _ s e e n _ a c t i o n () {
 r e t u r n n e w A t t a c k ()
}

T a k e _ C o v e r

 p e r f o r m ()

p e r f o r m () {
 so ld i e r ->h ide () ;
}

p e r f o r m () {
 s o l d i e r - > m o v e () ;
 i f (s o l d i e r - > c a n _ s e e _ e n e m y () ! = 0) {
 r e t u r n s o l d i e r - > e n e m y _ s e e n _ a c t i o n () ;
 }e l se
 re tu rn 0 ;
}

c u r r e n t _ a c t i v i t ys o l d i e r

1 1

Object Oriented Design 13

Sequence Diagram

Show what happens when perform action() is called for a

patrolling sergeant and he sees the enemy.

Solution

The diagram must show the following sequence of events:

1. perform action() is called on the sergeant.

2. The sergeant calls perform() on its activity which is a

Patrol object.

3. The Patrol object calls move() on the soldier;

4. The Patrol object calls can see enemy() on the sergeant

which will return a pointer to the soldier that can be seen.

5. This causes the Patrol object to call the virtual

enemy seen action() function on the sergeant.

6. The sergeant creates a new Take Cover object and returns

it to the Patrol object.

7. The Patrol object then returns the Take Cover object back

to the Sergeant.

8. The Sergeant now completes the perform action() func-

tion by destroying the original Patrol object and storing

a reference to the new Take Cover object in its place so

that any subsequent call to perform action() will call the

perform() function in the new Take Cover object (see the

14 Engineering Part IIA: 3F6 - Software Engineering and Design

note containing the perform action() code in the UML

diagram).

m o v e ()

c a n _ s e e _ e n e m y ()

e n e m y _ s e e n _ a c t i o n ()

s : S e r g e a n t p : Pa t ro l

p e r f o r m _ a c t i o n ()

p e r f o r m ()

< < c r e a t e > >
t : T a k e _ C o v e r

< < d e s t r o y > >

p e r f o r m _ a c t i o n ()

p e r f o r m ()

h i d e ()

Object Oriented Design 15

A Further Extension

Suppose that it is now possible for a Corporal to be promoted to

Sergeant during the game. How must the software be updated?

Solution

If a soldier can be promoted, this means that Corporal and

Sergeant can not be derived from Soldier since this would

prevent a soldier changing rank. The solution is to make a soldier

have a rank object which can change. This means that a new

Rank class is needed which is the superclass for the Corporal

and Sergeant classes which house the virtual function.

The enemy seen action() function in Soldier must forward

the call to the enemy seen action() function to the Rank ob-

ject.

The subclasses of Activity have been omitted from the follow-

ing diagram since they remain unchanged.

16 Engineering Part IIA: 3F6 - Software Engineering and Design

S o l d i e r

 l o ca t i on

 p e r f o r m _ a c t i o n ()
 c a n _ s e e _ e n e m y () : S o l d i e r *
 m o v e ()
 f i r e_gun ()
 h i de ()
 e n e m y _ s e e n _ a c t i o n () : A c t i v i t y

A c t i v i t y

 p e r f o r m ()

C o r p o r a l

 e n e m y _ s e e n _ a c t i o n () : A c t i v i t y

S e r g e a n t

 e n e m y _ s e e n _ a c t i o n () : A c t i v i t y

r e t u r n n e w T a k e _ C o v e r () ;r e t u r n n e w A t t a c k () ;

R a n k

 e n e m y _ s e e n _ a c t i o n () : A c t i v i t y

r e t u r n r a n k - > e n e m y _ s e e n _ a c t i o n () ;

r a n k

1

ac t i v i t y

1

s o l d i e r 1

