
3F6 - Software Engineering and Design

Handout 4

The Unified Modeling Language
With Markup

Ed Rosten

Contents

1. Diagram Types

2. Class Diagrams

3. Object Diagrams

4. Sequence Diagrams

5. Communication Diagrams

6. State Diagrams

Copies of these notes plus additional materials relating to this course can be found at:
http://mi.eng.cam.ac.uk/~er258/teaching.

http://mi.eng.cam.ac.uk/~er258/teaching

The Unified Modeling Language 1

The Unified Modeling Language

• a formal graphical language comprising a set of diagrams for

describing software systems.

• used for designing, documenting and communicating various

views of the software architecture and program behaviour.

• these different views of the system can be used at varying

scales, presenting the key information and suppressing unim-

portant detail as desired.

Historical Note
UML evolved from three earlier rival approaches independently
developed between 1989 and 1994.

• Booch method developed by Grady Booch of the Rational
Software Corporation.

• Object Oriented Software Engineering (OOSE) devel-
oped by Ivar Jacobson of Objectory.

• Object Modeling Technique (OMT) developed by James
Rumbaugh of General Electric.

The first complete version of UML (V1.1) was released in 1997 by
a consortium which included DEC, HP, IBM, Microsoft, Oracle,
and Texas Instruments. The current release is V2.0 which is used
in this course.

2 Engineering Part IIA: 3F6 - Software Engineering and Design

Diagram Types

Structural Diagrams which describe the architecture or lay-

out of the system.

1. Class. These describe the software architecture of the sys-

tem by specifying what classes are present in the system, and

their relationships.

2. Object. These describe a snapshot of the system while it

is running and identify what objects are present at a given

instant, and their relationships.

Behavioural Diagrams which describe dynamic aspects of

the software behaviour by showing sequences of activity.

3. Sequence. These describe the time ordered activity of the

system as it performs a particular task.

4. Communication. These show the structural organization

of objects that pass sequences of messages to each other.

5. State. These are particularly useful for describing software

that can be modeled as a state machine.

Note that the UML specification contains 13 kinds of diagram

in total. Here we describe 5, but in fact, class and sequence

diagrams are the most commonly used.

The Unified Modeling Language 3

Class Diagrams

These show the classes in a software system, their attributes and

operations and their relationships.

Each class is represented by a box split into three sections:

Template classes like our image class can also be shown:

Image
-width: int
-height: int
+get_pixel(x:int,y:int): T
+set_pixel(x:int,y:int,val:T)
+load(filename:string)
+save(filename:string)

T Template class

Visibility of attribute/operation
+ public
- private

4 Engineering Part IIA: 3F6 - Software Engineering and Design

Suppressing detail

It is common to suppress unwanted or redundant levels of detail

in these diagrams. In particular, we often wish to suppress the

attributes of the class since these are part of the implementation

detail, and not available in the public interface.

Date

+get_day(): int
+get_month(): int
+get_year(): int
+set_date(d:int,m:int,y:int)

Also, in the earlier example, the Image class does not show the

get height() and get width() functions because we can see

that the class has height and width as attributes.

Formally the specification for the layout of an attribute is:

<visibility> <name> : <type>

and for an operation:

<visibility> <name> ([<argname> : <argtype>]) : <return type>

It is common to drop the visibility indicator and assume that all

operations are public and all attributes are private. and we will

do this

The Unified Modeling Language 5

Class Relationships

Objects will often contain other objects. For example a VideoFrame

might contain a Time rather than just an int to represent the

timestamp:

class VideoFrame : public Image {

public:

VideoFrame(int w, int h, Time t);

Time get_timestamp();

private:

Time timestamp;

};

This information can be represented in one of two ways in UML.

We can record timestamp as an attribute in the VideoFrame

class

VideoFrame
-timestamp: Time
+get_timestamp(): Time

6 Engineering Part IIA: 3F6 - Software Engineering and Design

Association Arrows

or we can draw an association between the two classes in a UML

diagram.

VideoFrame

+get_timestamp(): Time

Timetimestamp
1

name (or role)
of association

numeracy of
association

The line showing this association has:

1. An arrowhead showing navigability. A VideoFrame knows

what its timestamp is but the Time object doesn’t know

which VideoFrame it belongs to (indeed not all Time objects

do belong to VideoFrames).

2. A name for the role that the Time object plays within VideoFrame,

in this case ”timestamp”.

3. A number stating how many Time objects a VideoFrame

has, in this case one. This can be a fixed number or a range

(e.g. “0..3” or “*” or “1+”).

The Unified Modeling Language 7

Navigability

Associations can also show bidirectional navigability. For ex-

ample, consider the relationship between lecturers and lecture

courses in a timetabling application.

Lecturer
-name: string:

Course
-name: string
-year: int

 lecturer_in_charge
 1

my_courses
*

This shows that each Lecturer object knows about all the

courses they are teaching and that each Course knows which

lecturer is in charge. The * indicates that a lecturer may be

in charge of any number of courses (including none).

class Lecturer {

// ...

private:

vector<Course*> my_courses;

};

class Course {

// ...

private:

Lecturer* lecturer_in_charge;

};

It is also permissible to show no arrows on an association. This

indicates that the navigability is unknown, hence it usually ap-

pears during the design process.

8 Engineering Part IIA: 3F6 - Software Engineering and Design

Composition and Aggregation

UML also allows a class association to be adorned with a dia-

mond. Not all users of UML employ this, but where it appears,

it has the following meaning:

 A B 1

Composition

A solid diamond indicates that objects of class A own an instance

of objects of class B. The object of class A is responsible for

creating and destroying the instance of class B.

 A B 1

Aggregation

An empty diamond indicates that objects of class A know about

(have a reference or pointer to) objects of class B. It also implies

that A is a higher level construction than B, thus class B will not

need to know about class A. By contrast, a plain line indicates

that the two classes exist at the same level in the code.

The Unified Modeling Language 9

Class Derivation

Derived classes are shown using a triangular arrowhead pointing

to the base class (or superclass). Virtual functions are shown in

italics.

Shape

+draw()
+move(dx:int,dy:int)
+fill(col:Colour)

Rectangle
-left: int
-right: int
-top: int
-bottom: int
+draw()
+move(dx:int,dy:int)
+fill(col:Colour)

Ellipse
-x_centre: int
-y_centre: int
-width: int
-height: int
+draw()
+move(dx:int,dy:int)
+fill(col:Colour)

class name in italics
means class is abstract
(can’t actually have one)

italics mean functions
are virtual

10 Engineering Part IIA: 3F6 - Software Engineering and Design

Drawing Editor

We can now show the drawing editor using UML (suppressing

all attributes and operations):

Drawing_Editor

Current_Selection Shape

Ellipse Rectangle

Toolbox

Rectangle_Tool

Ellipse_Tool

Selection_Tool

Tool

 1 * 1
1

 *

 1

This is a simple diagram but it conveys a lot of useful information
about the architecture of the software.

^ ^

<<instantiate>> | | <<instantiate>>

| |

|

|

|

|___

The Unified Modeling Language 11

Object Diagrams

Object diagrams show the objects that exist at some moment of

time when the system is running.

The name and type of the object are shown in the top section

of the box and are underlined. This diagram shows four objects,

adrawing which is of type Drawing Editor, rectangle1 and

rectangle2 which are two objects of type Rectangle, and an

Ellipse called ellipse1.

The actual values of the attributes of the rectan-

gles and the ellipse are shown in the bottom sec-

tion of the box. Using this information we could

construct the following figure:

12 Engineering Part IIA: 3F6 - Software Engineering and Design

Sequence Diagrams

By contrast to class diagrams which show the static software

architecture, sequence diagrams show the dynamic behaviour of

a software system as it runs. For example, consider the drawing

editor - part of which is shown in this class diagram:

Suppose the drawing consists of two rectangles and the display()

function is called on the DrawingEditor. The series of function

calls that takes place can be shown in a sequence diagram:

The Unified Modeling Language 13

Interpreting the diagram

This diagram shows three objects. These are: one object of

type Drawing Editor called adrawing and two objects of type

Rectangle called rectangle1 and rectangle2. The vertical

axis of this diagram corresponds to time (traveling downward).

The white boxes show the duration of each call. This diagram ex-

plicitly shows the return from the two draw() calls with dashed

lines although these are often omitted.

The sequence of events is:

1. The display() function is called in adrawing.

2. adrawing calls the clear screen() function in itself.

3. This function returns.

4. adrawing calls the draw() function in rectangle1.

5. This function returns.

6. adrawing calls the draw() function in rectangle2.

7. This function returns.

8. The display() function is completed and returns.

14 Engineering Part IIA: 3F6 - Software Engineering and Design

Sequence Fragments

Sequence fragments allow procedural control functions such as if,

while, for, etc to be represented. They consist of a box around

the controlled action or sequence of actions labelled with the

fragment type in the corner and parameters along the top edge.

For example, if all of the shapes to draw was stored in an array,

the previous example might be redrawn as:

loop 1, N, [i <= N]

display
rectangle[i]:Rectangle

draw

The types of sequence fragment include:

Type Parameters Purpose

ref None decomposing diagrams

loop min,max, [cond] equivalent to for loop

opt [cond] equivalent to if ..

alt [cond1] ... equivalent to
[cond2] ... if .. else if ... else
[else] ...

break None used to break out of loops

The Unified Modeling Language 15

Creation and Destruction

Sequence diagrams can also show the creation and destruction of

objects in the system:

Scenario: The rectangle tool is used to draw a rectangle. This

will result in the creation of a new Rectangle object - this object

will then automatically set to be the current object in the selec-

tion tool. Then suppose the user doesn’t like the placement of the

rectangle and hits the delete button and destroys the rectangle.

The sequence diagram that illustrates this scenario must show

the construction and destruction of the rectangle:

16 Engineering Part IIA: 3F6 - Software Engineering and Design

Communication Diagrams

Communication diagrams are an alternative way of showing se-

quences of events.

adrawing

rectangle1

rectangle2

ellipse1

3: draw()

4: draw()

5: draw()

2: clear_screen()

1: display()

This diagram uses the same layout as the object diagram and

overlays functions calls on it. In order to make the sequence of

events explicit, the calls are numbered with a sequence number.

The Unified Modeling Language 17

State Diagrams

As well as thinking about the relationship between objects, the

behaviour of each individual object needs to be considered. In

function-oriented design, the behaviour of each function also needs

specifying. In either case this can be done by drawing a state

transition diagram, which shows how the system or object state

changes with different stimuli. UML specifies a notation for these,

which it calls statecharts.

Example: Air conditioning unit

Notation:

18 Engineering Part IIA: 3F6 - Software Engineering and Design

Other Types of UML Diagrams

In addition to the 5 diagram types listed above, UML also sup-

ports

6. Use Case Diagrams: for describing the interactions between

your program, users and other systems.

7. Activity Diagrams: for describing work flow in terms of se-

quential and parallel activities.

8. Timing Diagrams: for showing the execution of a program

along a time line. These are particularly useful for real time

event-driven programs.

9. Interaction Overview Diagrams: provide a high level view of

specific program interactions. Often used give more detail to

use case diagrams.

10. Composite Structure Diagrams: show the internal structure

of a class

11. Component Diagrams: for describing software components

as building bricks.

12. Deployment Diagrams: show how software components map

onto real hardware.

13. Package Diagrams: show how a system is composed of chunks

with interdependencies

14. Profile Diagrams: show extensions to new domains as stereo-

types relationships between them

