
3F6 - Software Engineering and Design

Handout 16

Software Management
With Markup

Edward Rosten

Contents

1. Software Engineering

2. Software Life Cycle

3. Team Organisation

4. Product Development

5. Specification and High Level Design

6. Project Management

7. Quality Control

8. Module Testing

9. Profiling Tools

10. Code Reviews

11. Low Level Documentation

12. Final Testing and Release

Copies of these notes plus additional materials relating to this course can be found at:
http://mi.eng.cam.ac.uk/~er258/teaching.

Software Management 1

Software Engineering

Software engineering is the application of a systematic, disci-

plined, quantifiable approach to the development, operation, and

maintenance of software.

Software typically evolves in 4 main stages:

Specification defines the functionality of the software and the

constraints on its operation. This will usually involve interac-

tion with the client in order to understand the requirements.

Implementation produces the software to meet the specifica-

tion. This is the design and build phase.

Validation ensures that the software does what it is supposed

to do. This will be a continuation of the testing done in the

development phase, but will usually be more comprehensive

and more formal. The end of this process is marked by the

client agreeing contract completion.

Evolution adapts the software to meet changing customer needs.

This includes maintenance, enhancements and re-design.

These phases constitute the software life cycle.

2 Engineering Part IIA: 3F6 - Software Engineering and Design

The Software Life Cycle

WaterFall Model

This view of the software life cycle is based on traditional engi-

neering processes. It presents a good abstract view of what is

involved but is somewhat idealistic.

Evolutionary Model

Real projects typically involve multiple iterations at each stage.

Hence, the evolutionary model is a more pragmatic view of the

software life cycle.

No provision for

errors and omis-

sions

Software Management 3

What can go wrong?

Project managementRisk high

• poor cost estimation and scheduling

• Inadequate progress tracking

• Poor man-management

SpecificationsRisk high

• Failing to capture user requirements properly

• Specification was incomplete and/or imprecise

DesignRisk low

• Poor choice of overall architecture

• Inconsistent module interfaces

• Code unreliable, slow, and crashes frequently.

• Confusing user interface

TestingRisk medium

• Inadequate

DocumentationRisk medium

• Insufficient

• Badly written

End result is software which is delivered late, over-budget, runs

too slowly, does not scale with increasing demand, unreliable and

very difficult to use.

4 Engineering Part IIA: 3F6 - Software Engineering and Design

Costly: Denver International Airport

As part of a new airport for Denver, started in 1989, a fully au-

tomatic baggage handling system was specified. This was a large

system, with 17 miles of track, 4,000 telecarts, 100 networked

computers, 59 bar code readers, and 311 radio receivers. The

contract was won by BAE automated systems, at a price of $193

million, with a opening date of October 1993.

Delays producing the software caused the airport opening to be

rescheduled again and again, and when it was finally tested it was

a complete failure, with baggage lost, misrouted and damaged.

In August 1994 it was decided to build a conventional baggage

handling system at a cost of $51 million.

The airport eventually opened 2 years late. The delays cost the

airport $3.2 billion in interest, operating and redesign costs.

Software Management 5

Fatal: London Ambulance Service

To replace the old manual system of despatching ambulances

from 999 calls, a new computerised system was commissioned.

Consultants estimated that it would cost £1.5 million, and take

18 months. The winning consortium bid only £937,000, and

estimated that it would take 6 months. It was 10 months late,

and was rushed into service on 26 October 1992, with no proper

testing or training. It was taken off-line the next day and they

went back to pen and paper. What happened?

• Problems communicating with the vehicle radio systems

• Sometimes too many vehicles were dispatched, or none at all,

with no way to check

• Messages scrolled off the top of the screen, and there were no

scroll bars

• The whole user interface was poorly designed and confusing

• The system slowed down until it was unusable, and required

regular reboots

• Due to a memory leak, the system crashed on 27 October

1992

6 Engineering Part IIA: 3F6 - Software Engineering and Design

Types of Software Project

There are many types of software project:

• 1 person making software for personal use.

• 2 or 3 people writing some research code.

• 5-9 people in a small start-up developing the first version of

a new product.

• 10-50 people in a small/medium company (SME) maintain-

ing and developing a relatively mature product.

• large software consultancy developing large bespoke software

systems for clients e.g. a University financial management

system.

• Microsoft, Oracle, Adobe, ...

Good practice varies across these as the emphasis and scale

changes.

For the rest of this course, the focus will be on engineering de-

velopment in the Start-Up → SME range of companies.

Software Management 7

Team Organisation

Architect: The principal designer, defines the overall architec-

ture, module structure and all major interfaces, usually also

an expert in the associated technology.

Project Manager: Responsible for scheduling the work, track-

ing progess and ensuring that all of the process steps are

properly completed.

Lead Programmer: Leader of a programming team. Will

typically spend 30% of his/her time managing the rest of

the team.

Programmer: Implements specific modules and often imple-

ments module test procedures.

Tester: Designs test and validation procedures for the com-

pleted software. Tests are based on initial specification and

will focus on the overall product, rather than the individual

modules.

Lead Programmer
Programmer
Programmer
Programmer

Lead Programmer
Programmer
Programmer
Programmer

Project Manager Architect

Tester
Tester

When manpower is limited, one individual may perform multiple

roles but ideally they should be distinct.

6 max

8 Engineering Part IIA: 3F6 - Software Engineering and Design

Software Product Development

In the start-up/small company scenario, the focus will be on

converting an idea or concept into a working product. The re-

quirements will be loosely known and will evolve over time. The

key is rapid prototype development and frequent user testing.

Initial Requirements

High Level Design

V0.1 Prototype

Revise Requirements

Internal "User Trial"

Revise Design

V0.2 Prototype

Revise Design

Small-scale user trial

V1.0 Beta

Test/Bug fix

Limited Release

V1.0 Release Product Release

Test/Bug fix

Specifications &
High Level Design

User
Documentation

Internal Code
Documentation

P1

P2

P3

Software Management 9

Specification and High Level Design

This is the job of the Architect.

The first step is to produce a high-level “white paper” setting

out the vision, the major functionality, the user experience etc. If

the software includes a user interface, show mock-ups and list use

cases. If there are performance targets, state them. Gaining

Concensus

This document should be readable by all sections of the company

i.e. marketing, sales, technical staff. It should be agreed by senior

management before going further.

Program specification and design:

1. divide software into modules (usually compilation units)

2. describe overall function of each module

3. define/document any special algorithms required

4. each module should define one or more class interfaces

5. document public functions/methods in each class

Assign modules to teams. Work with team leaders to assign

module and/or class implementations to team members. Sit-in

on initial meetings to verify understanding and resolve any issues.

10 Engineering Part IIA: 3F6 - Software Engineering and Design

Project Management

GOAL: ONTIME, ON BUDGET
The role of the project manager is: unpopular w. staff but CRUCIAL

1. Identifying required tasks and their dependencies

2. Assigning staff to tasks

3. Estimating task durations

4. Tracking progress through the life-time of the project

5. Advising senior management on progress

6. Rescheduling when necessary

7. Recording task information and completion rates.

(1), (2) and (3) will be in consultation with the Architect and

Lead Programmers.

In practice, (3) is the hard part. Staff will consistently underes-

timate the required time, accumulated historical data generated

by (7) provides a very valuable “sanity check”.

Tracking progress (4) should be via weekly meetings between the

Project Manager and the Team leaders.

Milestones should be set at key points

• to signal progress to higher managment

• to motivate staff

Software Management 11

Project Scheduling Tools

Given a list of tasks, predicted durations and staff assignments,

project management tools will provide:

1. Gantt charts showing time bars, dependencies and pro-

gess.

2. PERT diagrams emphasising dependencies and critical

paths.

3. Staff loading

4. Simplify rescheduling and performing “What if?” analysis.

Example Suppose that the following tasks have been identified:

Task Duration (Days) Who? Dependencies

T1 3 John Smith[50%] -

T2 15 John Smith[50%] -

T3 15 Susan Good[100%] T1 (M1)

T4 10 Ian Black[100%] -

T5 10 JS[80%],SG[20%] T2, T4 (M2)

12 Engineering Part IIA: 3F6 - Software Engineering and Design

Example: Microsoft Project

A Gantt chart shows the tasks on a calender:

A PERT diagram is a form of activity network, which emphasises

the relationships between tasks:

Must actively track progress (add today and color % task completion

Show the critical path (centre track)

Software Management 13

A Resource usage chart shows the loading on each staff member,

e.g. the chart for Susan Good is

In this case, there is an overload in weeks 3/4 which needs to be

resolved.

14 Engineering Part IIA: 3F6 - Software Engineering and Design

Delays and Rescheduling

Software projects are infamous for being late. There are many

causes of over-runs, e.g:

• Programmers are optimists.

• Programmers are often reluctant to admit to delays.

• Sales apply pressure for an early delivery.

• Designs often need to be modified as a result of early testing.

• Debugging times are unpredictable.

It is often assumed that

work done = time × people

This is not true, hence, delays are rarely soluble by adding more

manpower.

The only thing you can do with a late project is to

• cut features and/or

• reschedule

Software Management 15

The Mythical Man-month

Brooks’s Law: Adding manpower to a late software project

makes it later.

• An ideal project: infinitely parti-

tionable, with no communication

required.

time

people

• An unpartitionable project: cf “3

women cannot produce a baby in

3 months”.

time

people

• A project requiring communica-

tion: A software project has com-

plex intercommunications, and

the communication pathways in-

crease as O(n2). This extra com-

munication can quickly overhaul

any decrease due to partitioning.

time

people

16 Engineering Part IIA: 3F6 - Software Engineering and Design

Quality Control

Software development should not rely on testing/debugging to

transform a poor quality product into a good one. Strict quality

control must be applied throughout the development process via

1. a guide to software standards

2. source code control

3. module testing

4. the “nightly build”

5. weekly progress meetings

6. code reviews

Weekly progress meetings are essential at all levels. Typically, the

Project Manager will meet with the Lead Programmers weekly,

and the Lead Progammers will meet with the rest of their team

at least once per week.

The principle is that nobody should be left alone for more than

a week.

Progress meetings are not a waste of time - they are essential for

keeping everyone on track.

Software Management 17

Software Coding Standards

Every organisation should have a set of software coding standards

defining

• essential banners e.g. license declarations

• naming conventions for constants, variables, types and func-

tions, e.g. LINESIZE, int myvar, class TreeNode, DoSomething().

• layout conventions including indentation, layout of control

structures, placing of braces, etc

• deprecated programming styles, e.g.

– x=10, y=4;

– if (p==0) vs if (p==NULL), etc.

• consistent use of alternative library functions, e.g.

– printf("x=%d\n",x) vs cout << "x=" << x << ’\n’

• use of comments

• etc

The aim is to ensure that all code looks as if it was written by the

same person. This greatly simplifies understanding/maintenance

of other people’s code amongst the team.

18 Engineering Part IIA: 3F6 - Software Engineering and Design

Source Code Control

A source code control system provides

1. a central place to store all source code

2. a historical record of what has been done over time

3. a facility to record a set of sources as a “release”

4. an ability to reconstruct a project as it was at any time in

the past

5. a facility to create separate code branches and merge them

later

Example: Concurrent Versions System (CVS) CSV is popular,

but rather old fashioned. In terms of features, it has been largely

superseded. Subversion (SVN) provides a similar model but more

modern features (commits are transactions). Newer systems such

as git and Mercurial provide more advanced options.

a.h,a.c,b.h,b.c

CVS archive: project

>cvs checkout project
> edita.c
>cvs commit a.c
 new revision: 1.2; previous revision 1.1
>cvs update project
 Ub.c

>cvs checkout project
> editb.c
>cvs commit b.c
 new revision: 1.4; previous revision 1.3
>cvs update project
 Ua.c

Programmer 1 Programmer 2

Software Management 1

Module Testing

Testing at the module level should be an integral part of the code

development process. A good module testing strategy should

include the following principles:

• All non-trivial class methods should have debugging code

built-in.

• Debugging code should be included in product releases. Compile-

time DEBUG directives should only be used to exclude debug-

ging code if it has a significant impact on performance.

• Debugging should be enabled by switches set in a configura-

tion file.

• Every module should have a test program to exercise it - this

is often called a test harness.

• Where modules depend on other modules, the dependent

modules should be completed and tested first

Software should be designed top-down and built bottom-up

The combination of test harness and built-in debugging code is

used for three purposes:

1. debugging during code development

2. regression testing

3. post-release maintenance

2 Engineering Part IIA: 3F6 - Software Engineering and Design

Example: Testing a Stack Class

Consider a simple data structure implementing a stack of chars

class CharStack {

public:

CharStack(int size);

void push(char x);

char pop();

private:

int csize; // size of stack

int used; // num chars on stack

char *sp; // stack pointer

char *data; // stack storage area

bool trace; // set true to debug

};

The push operation is instrumented as follows:

void CharStack::push(char x)

{

*sp++ = x; ++used;

if (trace)

printf("CharStack: <...%c> %d of %d used\n",

*(sp-1),used,csize);

}

bool trace more often int trace and used as a bit array

Software Management 3

Now a test program can be written which can test the operation

of the stack in detail by setting the trace variable and recording

the output, e.g.

...

switch (testnum) {

case 1:

// test 1 - push n chars onto stack of size k

CharStack *cstack = new CharStack(k);

c = initialchar;

for (int i=0; i<n; i++) {

cstack->push(c); c++;

}

break;

case 2:

// test 2 -

...

The test program can pass the necessary test values via the com-

mand line, e.g.

> charstacktest 1 10 a 5

CharStack: <...a> 1 of 10 used

CharStack: <...b> 2 of 10 used

CharStack: <...c> 3 of 10 used

CharStack: <...d> 4 of 10 used

CharStack: <...e> 5 of 10 used

The programmer will use this facility during program develop-

ment. It will also form an integral part of Regression Testing.

4 Engineering Part IIA: 3F6 - Software Engineering and Design

Regression Testing & the Nightly Build

When the CharStack class is judged to be complete and tested

by the programmer, a regression test is constructed for it. Firstly,

the required outputs are recorded:

> charstacktest 1 10 a 5 > charstacktest1.out

> charstacktest 2 a b c > charstacktest2.out

> etc

Then a test script is written, e.g.

charstacktest 1 10 a 5 > tempfile

diff tempfile charstacktest1.out >> logfile

charstacktest 2 a b c > tempfile

diff tempfile charstacktest2.out >> logfile

etc

Every night, all of the completed modules and their test harnesses

are automatically:

• recompiled and

• all regression tests are run

This is called the Nightly Build. Every morning the logs are

checked and any modules which failed their regression tests must

be investigated and fixed.

The Nightly Build ensures that problems caused by changes and

code redesigns are detected as soon as they occur.

Software Management 5

Choosing Good Test Data

Test data should be chosen by dividing test inputs into valid and

invalid ranges (partitions). Test cases are then selected from the

centres and boundaries of each partition. This is called equiva-

lence partitioning.

Example: Date class The specification for a date class

states that it should accept dates from 1 January 1 until 31 De-

cember 9999:

Date

+get_day(): int
+get_month(): int
+get_year(): int
+set_date(int d, int m, int y)()

• Try values in the middle of the range and on the boundaries:

• Also try known problem values, e.g.

3-13 September 1752 29 February on non-leap years

29 February 1900 29 February 2000

6 Engineering Part IIA: 3F6 - Software Engineering and Design

Use of Profiling Tools

A new module may pass all of its tests but may still not be

fit for purpose. Three aspects of program behaviour will be of

particular concern:

performance Computationally intensive methods might exe-

cute more slowly than expected. This can be due to inefficient

loop structure, especially on inner loops; memory caching or

generally inefficient architecture

test coverage Testing can only indicate the presence of bugs, it

can never guarantee that there are none. One way to reduce

the chances of missing bugs is to ensure that all possible paths

through the code are properly tested.

memory leaks Memory leaks are notoriously difficult. They

only show up when a program is run for a long time, and

the source can be very difficult to track down. [cf the use of

smart pointers in CORBA to try to minimise this problem.

]

Fortunately, various tools (including the compiler itself) exist to

help detect the above problems.

Software Management 7

Example: Valgrind (linux) Purify(windows)

• a virtual machine using just-in-time (JIT) compilation tech-

niques

• the original code is translated into a special form of machine

code called IR

• IR is then executed on the virtual machine which has been

instrumented to provide all of the necessary checks and statis-

tics.

Valgrind can detect/monitor

• Use of uninitialized memory

• Reading/writing memory after it has been free’d

• Reading/writing off the end of malloc’d blocks

• Array bound violations

• Memory leaks

• Heap activity

• Race conditions in multi-threaded code

The problem with Valgrind and all similar profiling tools is that

they run very slowly (4 to 5 times more slowly in the case of

Valgrind). Hence, they are not so useful for real time programs.

8 Engineering Part IIA: 3F6 - Software Engineering and Design

Code Reviews

There are three types of code review:

Inspections These are quite formal and must follow a defined

procedure. An inspection team consists of 5 or 6 people

each of whom has a specific role: moderator, author, sec-

retary, user-representative, standards-bearer, QA-inspector.

provides audit trail: ISO9000

Walk-throughs These consist of 1 to 3 reviewers plus the au-

thor who manages the process. They are less formal than

inspections and are usually the best compromise in a small

company.

Readings A reading is like a walk-thru except that the empha-

sis is on the preparation phase and the actual meeting is just

for reporting results. They are better than nothing but miss

the benefit to the author of having to explain his code to the

reviewers.

All three types of code review share common features

• the goal is to detect errors not to fix them

• the reviewers should be familiar with the overall design and

the organisation’s sofware standards

• higher management does not attend or see the outcome

• all participants must be circulated with all relevant docu-

ments before the meeting and must prepare for the meeting

Software Management 9

Conduct of a Walk-Through

The reviewer team will typically consist of the lead programmer

and/or the program manager plus one or two peers. The author

is in control. The spirit should be similar to giving a technical

presentation, not an examination.

Before the meeting each reviewer should be provided with

1. copies of all related design documents

2. a copy of the organisation’s coding standards

3. copies of previous reviews on this or similar code

4. a list of any special use cases that the program manager

wishes to focus on

5. the code to be reviewed

At the meeting, the author should give an overview of the code

and its function, then go thru the code line-by-line. The reviewers

should have read the code themselves before the meeting and they

will ask for clarification and make comments. The author should

mark these on the code listing.

After the meeting, the author should review all of the comments

and modify the code accordingly.

Satisfactory code need only be reviewed once, but the reviewer

team might decide to hold a second review if they have severe

concerns.

10 Engineering Part IIA: 3F6 - Software Engineering and Design

Low Level Documentation

Good documentation of all product code is essential for future

maintenance and development.

This documentation should sketch the class structures, the way

that they interact and the primary data structures. Much of the

detailed documentation can be generated automatically from the

source code.

Example: Doxygen - analyses source code and uses special com-

ments to automatically generate documentation in both brows-

able HTML and Latex/RTF for paper versions.

For example, consider the following source code fragment
/** \file a.h \author Steve Young \date 27-02-07 */

/// This is the base class. It is provided here simply to

/// illustrate how doxygen works.

class Base {

public:

/// Construct a base with index \parm i

Base(int i);

/// Show this class with banner given by \parm s

Show(char * s);

private:

/// Private storage for base class

short *private;

};

/// This is a derived class

class Derived:Base {

public:

/// Show this class with banner given by \parm s

Show(char * s);

};

Point out the Doxygen comments and tags

Software Management 11

Automatically generated HTML documentation

12 Engineering Part IIA: 3F6 - Software Engineering and Design

Integration Testing

Once all program components have been built and individually

tested, they must be integrated to build the final system.

This is the stage of software development at which the Testers

take control. During the code development process, they will

have been designing a suite of system level tests. They may

also have been building simulations of other system components

(eg. hardware that the software integrates with), organising user

interface testing panels, etc.

Testing at this stage will be addressing the following issues:

1. Does the integrated system work properly?

2. Does it support all of the use cases listed in the initial design

requirements?

3. Does it support all of the functionality claimed in the docu-

mentation?

4. Does it scale to the required performance levels?

5. Is it possible to break the software?

Software Management 13

Interface Testing

One of the most common types of error in complex systems are

interface errors. Different teams of programmers may have mis-

understandings about how to use a particular interface. These

errors are not usually picked up in component testing since they

occur due to the interaction between components.

Common errors include:

• Passing parameters of the wrong type, or in the wrong order.

• Ignoring expected pre-conditions, e.g. passing an unsorted

array to a method expecting a sorted one.

• Calling functions in the wrong order, e.g. invoking methods

on an object before it is created.

Functional tests might reveal interface errors, however, the most

cost-effective means of finding interface errors is often a static

technique such as program inspection.

14 Engineering Part IIA: 3F6 - Software Engineering and Design

Stress Testing

Once the system has been completely integrated it is possible to

test the system for emergent properties such as performance and

reliability.

Stress testing places the system under more and more load until

the system fails. For example, a credit card transaction pro-

cessing system may be designed to process 1000 transactions per

second; stress testing tests the system up to, and beyond these

specification limits.

The aim of stress testing is to test the failure behaviour of the

system—to ensure that it suffers a graceful failure. There should

be no data loss, and no sudden crashes.

Stress tests may also highlight problems that would be unlikely

to come to light otherwise. For example, timing problems (e.g.

race conditions) are more likely to occur under high load.

Software Management 15

Bug Reporting and Triage

triage n. A process for sorting injured people into groups

based on their need for or likely benefit from immediate

medical treatment.

During integration testing, every bug discovered is recorded in a

database. The Lead Tester will examine every bug and assign a

priority to it. Typical, categories are:

critical a showstopper - must be fixed before release

high a high priority bug - fix if at all possible

medium fix as many as possible

low fix only if easy and obvious

The process of assigning categories to bugs is called triage.

As bug fixing progresses, the Project Manager will monitor the

total bug count. When it falls to a level that he considers ac-

ceptable, he will authorise a release.

16 Engineering Part IIA: 3F6 - Software Engineering and Design

Summary

The key elements of good software management are

• Clear and unambiguous specification and high level design

• Accurate task scheduling and assiduous progress monitoring

• Due attention to quality control especially

– Use of code reviews

– Rigorous testing of individual modules

– Extensive regression testing

• Keep staff fully engaged in progress through regular meetings

and good communication

