
3F6 - Software Engineering and Design

Handout 15

Database Systems II
With Markup

Ed Rosten

Contents

1. Relational Databases

2. Relational Model and SQL

3. Relational Algebra

4. Database Normalization

5. Security and SQL Injection

Copies of these notes plus additional materials relating to this course can be found at:
http://mi.eng.cam.ac.uk/~er258/teaching

http://mi.eng.cam.ac.uk/~er258/teaching

Database Systems II 1

Relational Databases

Databases are a common part of many large software systems.

They store data, provide transactional safety and allow efficient

searching and cross referencing of data. There are many data

storage models, and one of the most popular is the relational

model (Codd, 1970). This model allows for the designer to build

in data safety in much the same way as data typing, in order to

prevent entire classes of errors.

Many relational databases are accessed using SQL (Structured

Query Language). There are many SQL databases available:

• Free: PostgreSQL, MySQL, SQLite, (BerkeleyDB), . . .

• Commercial: Oracle, DB2, SQL Server, . . .

SQLite is the easiest database to start using as it requires no

setup, and is available on the teaching system. Type:

sqlite3 <db-name>

Then enter SQL commands followed by a ‘;’. The database will

be stored in a file called <db-name> which will be created if it

does not already exist.

Additionally, SQLite supports ACID transactions. Note that the

version of SQLite on the teaching system does not support foreign

key constraints. Additionally, SQLite does not support domain

constraints.

2 Engineering Part IIA: 3F6 - Software Engineering and Design

The relational model

The relational model is related to set theory. A relation is a ta-

ble. A relation contains a set of tuples (rows).
relation course

scheme Title Leader Lectures

t1 RISC Processors Sanchez 8

t2 QAM for modems Sanchez 34

t3 Introduction to Mainframes Belford 20

t4 Fast refresh LCDs Richard 1

t5 t5[Title] t5[Leader] t5[Lectures]

t6 t6[Title, Leader]

The meaning of the data is described by the scheme, which is a

set of column names. Column names are known as attributes.

course scheme = (Title, Leader, Lectures)

There is no ordering or grouping of attributes. The table is a

relation over this scheme. A relation r over a scheme R is written

as r(R). Each column has a domain, D. So:

DTitle = strings, DLectures = Z+

So each element ti[j] ∈ Dj and ti ∈ D1 ×D2 × · · · ×Dn

For example, the scheme (x, y) with Dx = Dy = R, the domain

of the tuples is the domain of all two dimensional vectors.

SQL:
CREATE TABLE course (Title text, Leader text, Lectures int, CHECK(Lectures > 0))
INSERT INTO course VALUES ("RISC Processors", "Sanchez", 10)
UPDATE course SET Lectures=8 WHERE Leader="Sanchez"
DELETE FROM course WHERE Lectures=8 AND Leader="Sanchez"
DROP TABLE course

domain↓ Constraint↓

SQL allows domain of tuples: Dt ⊆ D1 ×D2 × · · · ×Dn.

Database Systems II 3

Relational algebra: Projection Π

The projection operator, Π, removes columns by listing the ones

to be retained. The operator is written as:

Πcolumn1,column2,. . . (relation).

An example of applying projection is:

ΠLeader,Lectures (course) =

Leader Lectures

Sanchez 8

Sanchez 34

Belford 20

Richard 1

Consider a relation, r(R) where R=(x,y,z) and x, y, z ∈ R. Each

row represents a 3D vector. The relation Πx,y(r) contains the

projection of the vectors onto the x, y plane.

In SQL the SELECT statement performs all of the primitive

relational algebra funcionality. The selection above is rendered

as:

SELECT Leader,Lectures FROM course

The general form being:

SELECT Col1[, Col2, [· · ·]] FROM table

Note that SQL is not entirely relational and the expression:

SELECT Leader FROM course

has duplicate rows. To remove duplicates, use:

SELECT DISTINCT Leader FROM course

The there is a shorthand for the identity projection:

SELECT * FROM table

4 Engineering Part IIA: 3F6 - Software Engineering and Design

Relational algebra: Selection σ

The selection operator accepts a predicate, Θ and a relation.

Rows matching the predicate are retained:

σLeader=”Sanchez”(course) =

Title Leader Lectures

RISC Processors Sanchez 8

QAM for modems Sanchez 34

The general form of the resulting relation can be written in set

builder notation

σΘ(r) = {t|t ∈ r,Θ(t)}

That is, the result consists of all tuples t such that each tuple is

both in the relation r and for which the predicate applied to the

tuple, i.e. Θ(t), is true.

In SQL, selection is also performed with the select statement with

the predicate being specified by the WHERE clause:

SELECT * FROM course WHERE Leader=”Sanchez”

Predicates can contain expressions involving any or all of the

rows. SQL has more or less the same set of numeric operators as

C and also AND, OR, NOT, BETWEEN:

SELECT * FROM course WHERE Lectures BETWEEN 2 AND 10

and IN: WHERE Leader IN ("Belford", "Richard")

Projection and selection can be readily composed, so in general:

ΠS(σΘ(r)) translates to SELECT S FROM r WHERE Θ

Database Systems II 5

Union, intersection, subtraction

In SQL, union intersection and subtraction behave much more

like set theory than relational algebra. For these operations it is

the order of the attributes not the names of the attributes which

have significance.

Set union, ∪ aggregates the rows of two sets together. If there

are two relations, r(R) and s(R), then the union, r ∪ s can be

computed:

SELECT * FROM r UNION SELECT * FROM s

Likewise, intersection can be computed using:

SELECT * FROM r INTERSECT SELECT * FROM s

Set differencing is either MINUS or EXCEPT depending on the

database.

s

r−s

r

SELECT * FROM r EXCEPT SELECT * FROM s

Since ordering, not naming matters, with the schema R=(a,b),

S=(b,a) and the tables r(R), s(S):

r s

a b b a

1 2 3 5

3 4 1 2

r - s =
a b

3 4

6 Engineering Part IIA: 3F6 - Software Engineering and Design

Join / cartesian product ×

The cartesian product is the only primitive operator which com-

bines two tables with different schemes. Joining two relations,

a × b generates a new relation with every row in in a paired

with every row in b. Joining is very useful for extracting related

information.

students

Student Supervisor

Gibson Sanchez

Murphy Belford

Libby Goldstein

Cook Sanchez

labs

Lab Demonstrator

3F27 Cook

3F89 Libby

4F185 Margo

3F34 Ray

The table students× labs is on the next page. Note that the

attributes get augmented with the table name to avoid ambiguity.

The table name may be omitted if it is not ambiguous. SQL:

SELECT * FROM students, labs

Find all students of “Sanchez” who are demonstrating:

ΠStudent(σStudent=Demonstrator∧Supervisor=“Sanchez”(students× labs))

SELECT Student FROM students, labs

WHERE Student=Demonstrator AND

Supervisor="Sanchez"

The result is Cook . Selection is often composed with joining,

so it is given the non primitive operator, the theta join:

a onΘ b ≡ σΘ(a× b).

Database Systems II 7

students × labs

students.Student students.Supervisor labs.Lab labs.Demonstrator

Gibson Sanchez 3F27 Cook

Gibson Sanchez 3F89 Libby

Gibson Sanchez 4F185 Margo

Gibson Sanchez 3F34 Ray

Murphy Belford 3F27 Cook

Murphy Belford 3F89 Libby

Murphy Belford 4F185 Margo

Murphy Belford 3F34 Ray

Libby Goldstein 3F27 Cook

Libby Goldstein 3F89 Libby

Libby Goldstein 4F185 Margo

Libby Goldstein 3F34 Ray

Cook Sanchez 3F27 Cook

Cook Sanchez 3F89 Libby

Cook Sanchez 4F185 Margo

Cook Sanchez 3F34 Ray

8 Engineering Part IIA: 3F6 - Software Engineering and Design

Cartesian products of real numbers

An alternative interpretation of joining is that allows the appli-

cation of implicit functions to be applied to the space spanned

by the data.

Consider a scheme R = (n), n ∈ R and two relations x(R) and

y(R). First consider the case where the relations contain every

element of the domain, i.e. x.n = y.n = R. Evaluating the

expression:

σx.n2+y.n2−a2=0(x× y)

yields all points on a circle of radius a. That is it finds all points

which are the solution to the equation: x2 + y2 − a2 = 0

Implicit equations are ‘solved’ by evaluating them at every point

in the space. Since the data does not usually span the entire

domain, the implicit function is only evaluated at the data:

σx.n2+y.n2<a2(x× y)

x

y

x3x1x2 · · ·

y1

y2
...

Dy = R

Dx ×Dy = R2

Dx = R

Database Systems II 9

Natural Join on

A ‘natural join’ is a join followed by some selection and projec-

tion:

• Perform a join.

• Perform selection so that attributes with the same name must

be equal.

• Perform projection to remove duplicated attributes.

Note that there are no attribute ambiguities.

If attributes with the same name are semantically the same, then

the natural join is usually the correct kind of join to use. In ad-

dition to the ‘labs’ table, we also have a table listing lab sessions:

sessions

Lab Title

3F27 Mainframe filesystems

3F27 Filesystem security

3F89 Large vehicle control

4F185 Networks for finance systems

3F34 Magnetic storage forensics

The natural join matches up the shared attributes

sessions on labs =

Demonstrator Lab Title

Cook 3F27 Filesystem security

Cook 3F27 Mainframe filesystems

Libby 3F89 Large vehicle control

Margo 4F185 Networks for finance systems

Ray 3F34 Magnetic storage forensics

10 Engineering Part IIA: 3F6 - Software Engineering and Design

More formally:

There are two relations r(R) and s(S).

The set of shared attributes is A:

A = {A1, · · · , An} = R ∩ S

where n = |A|. The set of all attributes with no duplicates is:

R ∪ S.

The natural join is therefore:

r on s ≡ ΠR ∪ Sσr.A1=s.A1∧···∧r.An=s.An(r× s)

In SQL, natural joins are performed with NATURAL JOIN:

SELECT * FROM sessions NATURAL JOIN labs

In practice, you will usually design databases by considering the

type of data, how it is stored in tables and how to extract the

relevant information. Relation algebra will not crop up much in

day-to-day design, but it is essential for understanding how the

various operations in a relational database work.

Database Systems II 11

Keys, and uniqueness

Rows in a relation can be uniquely identified by a key, which can

consist of one or more columns. A key must be able to uniquely

identify all possible rows that relation could have in the domain

of tuples, not just the rows that currently exist.

Superkey: Any collection of columns which can uniquely iden-

tify a row. There may be more than one valid superkey.

Candidate key: A minimal superkey, i.e. a superkey with the

minimal number of columns. I.e. there is no subset of the columns

in a candidate key which will also form a candidate key. There

may be more than one candidate key.

Non prime attributes: attributes of a relation which do not

form part of any candidate key.

Primary key: A superkey or candidate key which has been

selected to have a special status. A table can have at most one

primary key.

There is an additional type which is not a key in the above sense:

Foreign key: If two relations r and s share a key k, then r[k] is

a foreign key if k is the primary key of s. Therefore, the foreign

key k does not necessarily uniquely identify the rows of r.

12 Engineering Part IIA: 3F6 - Software Engineering and Design

Normalization
If a database has duplicated information then it is subject it up-

date anomalies, and the information can become inconsistent.

Imagine adding contact details to the ‘course’ table to allow lec-

turers to be contacted easily:

Title Leader Lectures Telephone

RISC Processors Sanchez 8 65960

QAM for modems Sanchez 34 65960

Introduction to Mainframes Belford 20 65536

Low latency LCD screens Richard 1 32768

If the table is updated, for instance with the SQL command:

UPDATE course SET Leader="Libby" WHERE Title="RISC Processors"

Then the contact details will become incorrect. The process of

normalizing a database involves splitting up large tables with

only weakly related information into a number of smaller tables.

Normalized data is then accessed by joining tables together and

performing selections on the results.

The database above is not normalized because there is duplicated

data. More intuitively, the telephone number has merely been

inserted as a convenience and has nothing directly to do with

courses.

Much like type safety and object oriented design, database nor-

malization allows databases to be designed such that certain er-

rors (for instance data inconsistency) are impossible. Any error

which is reduced to an impossibility can never be a bug.

Normalization is the process of movind the database comply with

normal forms (1NF, 2NF, 3NF, BCNF, 4NF, 5NF and DKNF).

Database Systems II 13

First Normal Form (1NF)

1. Make sure that your database really obeys the relational

model:

(a) No ordering over rows

(b) No ordering over columns

(c) No duplicates

2. Each row/column intersection contains exactly one datum.

Consider trying to extend the earlier design to allow for multiple

phone numbers:

BAD

BAD

Title Lectures ID Numbers

· · · 8 456 65950, 60294, 70231

· · · 8 456 65950, 60294, 70231

· · · 34 20 65536

· · · 1 82 32768, 16384

Title Lectures ID Phone 1 Phone 2 Phone 3

· · · 8 456 65960 60294 70231

· · · 34 456 65960 60294 70231

· · · 20 9 65536

· · · 1 82 32768 16384

Note the use of IDs to avoid duplicates as names make bad keys:

employees

Name ID Phone

Sanchez 456 65960

Belford 9 65536

Richard 82 32768

Sanchez 456 60294

The list of phone numbers for the

leader of a particular course can now

be extracted using relational algebra:

ΠPhone(σTitle=“RISC Processors”(course on employees))

14 Engineering Part IIA: 3F6 - Software Engineering and Design

Second Normal Form (2NF)

A table is in second normal form if it satisfies:

1. It is in first normal form (1NF).

2. All non-prime attributes depend on the whole candidate key.

From the previous example, the complete relation, employees(E),

is:
Lack of normalization allows
buggy programs to create incon-
sistencies:

Inserting the record (“Belford”,
10, 131072) leads to a mismatch
between the name and id.

An employee name change re-
quires updates across multiple
rows, which may be done incor-
rectly. It also requires more lock-
ing.

employees

Name ID Phone

Sanchez 456 65960

Belford 9 65536

Richard 82 32768

Sanchez 456 60294

Sanchez 456 70231

Richard 82 16384

The candidate key is C = (ID, Phone). The non prime attribute

is therefore E − C =(Name). The employees’ names do not

depend on the phone number, only the ID. Therefore the table

is not in 2NF. A 2NF design is:

employee names

Name ID

Sanchez 456

Belford 9

Richard 82

contacts

ID Phone

456 65960

9 65536

82 32768

456 60294

456 70231

82 16384

Database Systems II 15

Third Normal Form (3NF)

“I swear by Codd that each non-prime attribute shall depend

upon the key, the whole key and nothing but the key.”

More formally a table over R is in 3NF iff:

1. It is in 2NF (and therefore 1NF)

2. Every non-prime attribute is directly dependent on every

candidate key of R.

Practical Date Demonstrator Contact Pay rate

Acoustic coupling Mon 1 Feb Dade 45102 10

Acoustic coupling Sat 7 Feb Dade 45102 15

Self-propagating code Tue 2 Mar Joey 67822 10

Self-propagating code Sun 9 Mar Kate 62341 15
The candidate key is:

(Practical,Date)

Table is not fully normalized because there is repetition of data

(the contact numbers and the pay rates). The table is not in

3NF because:

• Pay rate depends on the key, but not the whole key. Specif-

ically, it only depends on the date.

• Contact depends upon the whole key, but the dependence is

transitive, not direct, that is:

Contact → Demonstrator → (Practical, Date)

Updating the date requires an update of the pay rate. Updating a demonstrator requires

an update of the contact number.

16 Engineering Part IIA: 3F6 - Software Engineering and Design

SQL Constraints

In addition to normal forms, which can be represented in rela-

tional algebra, SQL allows tables to be constructed with addi-

tional constraints which make the database more robust. Unlike

normalization, constraints do not make it impossible to construct

errors. However, constraints do make errors cause transactions

to abort, rather than make inconsistent data.

NOT NULL prevents missing attributes (helpful for 1NF)

CREATE TABLE course (Name string NOT NULL, ...)

A primary key can be specified. This will ensure that ID is

unique, and therefore all rows are also unique.

CREATE TABLE people (Name string, ID int PRIMARY KEY)

Known candidate keys can be marked as unique:

CREATE TABLE r (a, b, c, d, UNIQUE(a, b),

UNIQUE(a, c, d))

A particularly important constraint is FOREIGN KEY which

ensures that an attribute is a primary key in another table:

CREATE TABLE course (Title string PRIMARY KEY, ID int,

Lectures int,

FOREIGN KEY (ID) REFERENCES employees)

The ID of the course leader is now constrained to be a valid em-

ployee ID. The database will abort a transaction which attempts

to add an invalid ID, or change an ID to an invalid one. Addi-

tionally the database will abort any transactions which invalidate

existing ID. For example, the database will not allow erasure of

employees with courses still assigned.

Database Systems II 17

Security and SQL injection

Randall Munroe c©2009, http://xkcd.com/327/

Consider some code like this:

string name;
cout << "Enter product name:" << endl;
getline(cin, name);
string query = "SELECT * FROM products WHERE name=\"" + name + "\"";
do_sql(query);

What happens if the user enters:

" ; DROP TABLE products; --

The query becomes:

SELECT * FROM products WHERE name="" ; DROP TABLE products; -- "

The results is that the user can inject arbitrary SQL code by

carefully constructing the input. This is one of the largest source

of security holes.

http://xkcd.com/327/

