
3F6 - Software Engineering and Design

Handout 14

Database Systems I
With Markup

Ed Rosten



Contents

1. Transaction Processing

2. The ACID properties

3. Recovery and log files

4. Concurrency and its problems

5. Locks and deadlock

6. Lock-free concurrency control

Copies of these notes plus additional materials relating to this course can be found at:
http://mi.eng.cam.ac.uk/~er258/teaching.



Database Systems I 1

Transaction Processing

Databases are a common component of many distributed sys-

tems. They store records for a large number of distinct entities

and will typically support a small set of operations to access and

manipulate those entities. These operations can be assumed to

be atomic i.e. they cannot be interrupted.

External clients execute transactions which are sequences of op-

erations applied to one or more database entities designed to

achieve a single logical affect.

Client A


Client B


Transaction

Manager


Recovery Log


Database


TB


TA


Transactions
 Atomic Operations


The transaction manager ensures that transactions appear atomic

to clients. Client receives an acknowledgement of every successful

transaction.



2 Engineering Part IIA: 3F6 - Software Engineering and Design

Example: Bank transfer

Each account is represented by a different database object, which

guarantees that each operation is atomic

class account {

// link to required account records

DBaseAccessInfo dbinfo;

public:

// Constructor - open an account

account(string account_name);

// Atomic operations

void debit(float amount);

void credit(float amount);

float read_balance();

};

A typical transaction will be

void transfer(account& A, account& B, float amount)

{

float balance = A.read_balance();

if (balance >= amount) {

A.debit(amount);

B.credit(amount);

}

}

A key issue is what happens if there is a failure part-way through

the transaction.



Database Systems I 3

System Crash

What happens if the system crashes in the middle of a transfer?

void transfer(account& A,

account& B,

float amount) {

float balance;

balance = A.read_balance();

if(balance >= amount) {

A.debit(amount);

<-----------------------------CRASH!

Account A will have had its money debited, but it will never

appear in account B. (Good for the bank, not so good for B!)

The transaction manager (or any transaction processing sys-

tem) must have a means of recovering from errors, and always

leaving the system in a valid state.



4 Engineering Part IIA: 3F6 - Software Engineering and Design

The ACID Properties of Transactions

A transaction my fail in many different ways (e.g. two clients try

to access the same entity at the same time, temporary network

failure, software fault, disk crash, etc).

The transaction processor tries to ensure that transactions have

the following properties:

• Atomicity

Either all or none of the transaction’s operations are per-

formed.

• Consistency

Transactions transform the system from one consistent state

to another.

• Isolation

An incomplete transaction cannot reveal its result to other

transactions before it is complete.

• Durability

Once the transaction is committed, the system must guaran-

tee that the results of its operations will persist, even if there

are subsequent system failures.



Database Systems I 5

Recovery

In order to maintain the ACID properties, a transaction processor

must be able to recover from errors by restoring the system to a

consistent state.

To achieve this, transactions are modelled on the following state

machine:

Example: the transfer transaction

void transfer(account& A, account& B, float amount)

{

try {

int id = BeginTransaction(); // Record transaction start

float balance = A.read_balance();

if (balance >= amount) {

A.debit(amount);

B.credit(amount);

}

Commit(id); // success so commit

}

catch (...){

Abort(id); // failure so undo

}

}

←

Transaction
processor might
invalidate this
transaction (see
last slide)



6 Engineering Part IIA: 3F6 - Software Engineering and Design

Recovery Mechanisms

Recovery relies on two sources of information being stored in

safe, persistent storage (e.g. a RAID array):

• A log of every database operation

• Frequent snapshots which record the currently active trans-

actions (called checkpoints).

Recovery involves re-doing any transactions which had been com-

mitted since the last checkpoint, and undoing any uncommitted

ones.

In the case of catastrophic failures, the database is restored from

backup tape and all logged transactions are re-done from the

point of failure. With modern RAID array technology and pro-

tected power supplies, this type of failure is rare.



Database Systems I 7

Log Files

The log file is the core of the recovery process. Each database

action is added to the end of the log file immediately before it

occurs (otherwise a crash could result in a committed transaction

not being recovered). A typical log format is as in this example:

<checkpoint> - A snapshot was taken here

<T1 start> - Transaction 1 has started

<T1, A, 1000, 950> - The value of object A was

<T1, B, 2000, 2050> changed from 1000 to 950

<T2, start>

<T1, commit> - Transaction 1 committed

<T2, C, 700, 600>

<T2, abort> - Transaction 2 aborted

The presence of old and new values in the object lines <T, A, old, new>

allows the log file to be used to UNDO transactions when an abort

occurs (as happens to T2 above). In the case of a rebuild, the log

file is also used to REDO all the operations since the reloaded

<checkpoint>.



8 Engineering Part IIA: 3F6 - Software Engineering and Design

Recovery Algorithm

In the example above, the snapshot taken at the checkpoint

would record that T2 and T3 are active.

At the point of failure, T2 and T4 had been committed, so they

need REDOing. T3 and T5 had started, but were incomplete,

so the best we can do is to UNDO them to ensure a consistent

database state.

An algorithm for working out which to UNDO and REDO is as

follows:

1. Add all transactions active at the checkpoint to undo_list.

The redo_list is initially empty.
2. Work forwards from the checkpoint:

• If you find a <Ti start>, add that transaction to undo_list.

• If you find a <Ti end>, move that transaction to redo_list.

3. UNDO transactions on undo_list, working backwards from

the end of the log.

4. REDO transactions on redo_list, working forwards from

the checkpoint.



Database Systems I 9

Concurrency

In practice, a database transaction processor will be receiving a

stream of transaction requests, and will need to execute transac-

tions in parallel in order to provide acceptable response times.

When two transactions reference the same account, uncontrolled

interleaving of operations can produce an incorrect result. There

are three classes of concurrency problem:

• The uncommitted dependency problem

Time Transaction 1 Transaction 2

t1 – A.write()

t2 A.read() –

t3 – abort()

In this case, transaction 1 reads an updated account value, but

transaction 2 aborts undoing the effect of the update. Transac-

tion 1 is then left holding an incorrect account value.

Note: A.read() indicates any operation which reads a value from ac-

count A but does not change it (eg A.read_balance() ), A.write()

indicates any operation which changes account A (eg A.credit() or

A.debit()) .



10 Engineering Part IIA: 3F6 - Software Engineering and Design

• The lost update problem

Time Transaction 1 Transaction 2

t1 A.read() –

t2 – A.read()

t3 A.write() –

t4 – A.write()

In this case, the change made to account A at t3 by transac-

tion 1 is lost because it is overwritten at time t4 by transac-

tion 2.

• The inconsistent analysis problem

Time Transaction 1 Transaction 2

t1 A.read() –

t2 – A.read()

t3 – A.write()

t4 – commit()

In this case, transaction 2 updates account A after transac-

tion 1 has read its value. Hence, transaction 1 is left holding

an incorrect value for account A.



Database Systems I 11

Locks

The 3 problems noted above can be prevented by associating

locks with each account.

When a transaction wishes to access an account it first secures

a lock on that account, when it has finished it releases the lock.

If a lock is already taken, the transaction must wait until it is

released.

It is more efficient, however, to allow 2 levels of locking

• Shared (S) - allows read only access

• Exclusive (X) - allows read/write access

Several transactions can hold an S lock on an account, but only

1 transaction can hold an X lock.

When a transaction requires a lock, the following protocol applies

New request from Currently allocated Locks

transaction T None S (owned by T) S (other) X

S ok ok ok wait

X ok ok wait wait

Note that in practice locking is implicit. Any read access au-

tomatically acquires an S lock, any write access automatically

acquires an X lock. All locks are held until the transaction com-

mits or aborts.



12 Engineering Part IIA: 3F6 - Software Engineering and Design

Concurrency with Locking

With 2-stage locking as described above, the problem cases de-

scribed early are avoided

• The uncommitted dependency problem

Time Transaction 1 Transaction 2

t1 – A.write()

– A.Xlock()

– (A.X granted)

t2 A.read() –

A.Slock() –

wait –

wait –

t3 wait abort()

wait (A.X released)

t4 (A.S granted)

–

Now the read by transaction 1 is delayed until transaction 2

has aborted and the database state has been restored.



Database Systems I 13

• The lost update problem

Time Transaction 1 Transaction 2

t1 A.read() –

A.Slock() –

(A.S granted)

– –

t2 – A.read()

– A.Slock()

– (A.S granted)

– –

t3 A.write() –

A.Xlock() –

wait –

t4 wait A.write()

wait A.Xlock()

wait wait

wait wait

wait wait

In this case, the incorrect database state is avoided, but both

transactions end up waiting for each other.

This is called deadlock.



14 Engineering Part IIA: 3F6 - Software Engineering and Design

Deadlocks

Deadlock can occur whenever two transactions T1 and T2 require

two resources R1 and R2 to proceed:

• T1 holds R1 and is waiting for R2

• T2 holds R2 and is waiting for R1

Deadlock detection

Deadlocks can be detected by building a resource allocation

graph from which a wait-for-graph can be constructed. A cycle

in a wait-for-graph indicates a deadlock.

R
1


T
1


R
2


T
2


allocated


requested


T
1


T
2


Resource Allocation Graph
 Wait-For Graph


Deadlock recovery

Select one of the deadlocked transactions, called the victim and

abort it. Any changes made by the victim are undone and then

all locks held by it are released.

Criteria for choosing a victim are

• avoid transactions which have been running a long time

• avoid transactions which have made many updates

• prefer transactions which are blocking access to many re-

sources



Database Systems I 15

Resource Allocation and Wait-For Graphs

A resource allocation graph shows the state of both acquired and

requested resources along with the time at which each request or

allocation was made.

R
1
 R
2


T
R


T
 R


t


t


R has been allocated to T since time t


T has been waiting for R since time t


R

2

 is blocking the allocation of
R


1


Example: the lost update problem again

Time Transaction 1 Transaction 2

t1 A.read() –

t2 – A.read()

t3 A.write() –

t4 wait A.write()

A.S


T
1


A.X


T
2


1


2


T
1


T
2


3


4




16 Engineering Part IIA: 3F6 - Software Engineering and Design

Lock-free Concurrency Control

Locking mechanisms carry a significant computational overhead.

In very large systems with many accounts, the probability of

two transactions conflicting might be very small. In such cases,

locking is very inefficient. PESSIMISTIC

An alternative strategy is to allow uncontrolled access to ac-

counts, and then simply abort any transactions which might have

suffered a conflict.OPTIMISTIC

When the transaction starts, shadow copies of the accounts are

taken and changes are only made to these copies. When the

transaction asks to commit, the transaction undergoes valida-

tion to ensure that there could not have been any conflicts with

transactions already accepted.

The validation stage looks at shadow accounts, and their time-

stamps, and compares them with the real accounts to ensure

that:

• no other transactions have committed operations on the same

accounts
• or, if they have, that those operations did not conflict with

the operations this transaction performed.

If both these tests fail, the shadow is discarded and the transac-

tion starts again. Otherwise, the real account is updated with

the new information.

Which is best? Lock if conflicts are frequent; Lockfree otherwise



Database Systems I 17

Summary

• A transaction is a collection of operations which perform a

single logical function.

• Transactions should provide Atomicity, Consistency, Isola-

tion and Durability (the ACID properties).

• A log file, and regular checkpoints (backups) provide dura-

bility in the event of a system crash, and allow transactions

to be undone.

• Concurrent execution conflicts can lead to an inconsistent

database state.

• Locking prevents conflicts but leads to deadlocks.

• Deadlocks can be detected by looking for cycles in allocation

graphs.

• Locking can be inefficient, optimistic “lock nothing, and fix

later” strategies may be more efficient in some applications.


