
3F6 - Software Engineering and Design

Handout 13

Concurrent Systems II
With Markup

Edward Rosten

Contents

1. Critical Sections

2. Mutexes

3. Signals

4. Monitors

5. Semaphores

6. Pipes and messages

Copies of these notes plus additional materials relating to this course can be found at:
http://mi.eng.cam.ac.uk/~er258/teaching.

Concurrent Systems II 1

Critical Sections

Concurrent access to shared writable resources causes race con-

ditions.

int i;

// thread 1 // thread 2;
++i ++i ← critical section

//In assembler

LDAA i LDAA i

INCA INCA

STAA i STAA i

There is a race condition in the update of the date. Only one

thread can sefely access this resource simultaneously. Sections of

code using this resource are critical sections.

A lock is often called a mutex since it ensures Mutual exclusion

of a region of code.

Critical sections can be protected with locks. Without care, ac-

quisition of locks can cause deadlock. One way of preventing

deadlock:

1. Number locks sequentially

2. Record last lock acquired

3. Acquiring a lock with a lower number is an error

2 Engineering Part IIA: 3F6 - Software Engineering and Design

A critical section is a part of the code which accesses a shared

resource.

Any access to the critical section should ensure the following:

•Mutual exclusion. Only one thread at a time may enter

the critical section;

• Fairness. Each thread trying to enter the critical section

must eventually succeed;

• In the Absence of contention a single thread wishing to

enter a critical section must succeed, ideally with minimal

delay;

In addition, the system should be as efficient as possible.

• any thread which is blocked from entry to a critical section

should not waste CPU

Solutions to this problem generally utilise low-level system calls

provided by the operating system. Blocked threads are sus-

pended on an event queue and resumed when it is their turn

to enter the critical section.

Low-level code within the operating system will often waste CPU

for a very short amount of time.

Concurrent Systems II 3

A Useless Access Control Mechanism?

bool avail;

void Lock(){ bool test_and_set(){

while(avail == false); bool old = avail;

avail = false; avail = false;

} return old;

}

void Unlock() void Lock(){

{ while(test_and_set());

avail = true; }

}

int i;

//Thread 1 //Thread 2

Lock(avail); Lock(avail);

i++; i++;

Unlock(avail); Unlock(avail);

Now avail is the writable shared resource. With some modifi-

cation, however, it does work!

1. Disable interrupts in Lock and Unlock. This is not sufficient

for multiprocessor systems.

2. Use atomic operations.

4 Engineering Part IIA: 3F6 - Software Engineering and Design

Peterson’s mutex algorithm

Pure software solutions exist to the mutex problem:

bool intent1 = 0, intent2 = 0

int turn;

//Thread 1 //Thread 2

intent1 = 1; intent2 = 1;

turn = 2; turn = 1;

while(intent2 && turn == 2); while(intent1 && turn == 1);

//Critical section //Critical section

intent1 = 0; intent2 = 0;

This algorithm does not work on modern multiprocessor systems

because they are allowed to re-order instructions including writes

to memory.

Concurrent Systems II 5

Signals - the user’s perspective

Suppose that a thread needs to execute a single processing cycle

every time that a user presses a key (e.g. to update a grammar

checker in the background).

Signal keypress;

bool done = false;

// ---------------------------------------

void GrammarChecker(int i) {

do {

keypress.wait();

// update grammar checking

...

} until (done);

}

// ---------------------------------------

// Main thread

Thread gcheck = create(GrammarChecker,0,low);

while (inputting) {

char ch = GetKey();

result = Process(ch);

if (result == error) {

kill(gcheck); reportError();

}

keypress.send();

}

done = true;

join(gcheck);

...

Running the grammar check as a low priority thread allows com-

plex computation to be done in the background without spoiling

user response times.

6 Engineering Part IIA: 3F6 - Software Engineering and Design

Signals - the OS perspective

Using a signal allows a thread to suspend itself (wait) until an-

other thread sends it that signal (send). Like a semaphore, a

signal is an operating system defined data type:

class Signal {

public:

void send();

void wait();

private:

ThreadQueue q;

}

void Signal::wait()

{

put caller’s thread record on q;

resume next thread in Ready queue;

}

void Signal::send()

{

if (q is not empty) {

remove next thread from q;

place it in Ready queue;

}

}

Draw q holding a list of pro-
cess records. Each waiting
to be signalled.

Note that if (q is not empty) could be while (q is not empty)

Need to check the exact semantics of actual implementation.

Concurrent Systems II 7

Semaphores - the user’s perspective

Semaphores are a classic solution to the mutex problem. A

semaphore counts available resources. Attempts to acquire re-

sources when none remain blocks. A critical section has a single

available resource: which thread (if any) is currently executing.

Semaphore s = 1;

//Thread 1 //Thread 2

acquire(s); acquire(s);

//critical section //critical section

release(s) release(s)

Operations:

• Acquire Waits while s == 0, then decrements s.

• Release Incerments s.

Alternative names:

Acquire/Release, Wait/Signal, Pend/Post, Enter/Leave, Procure/Vacate,

P/V, Verhogen/Prolaag

Semaphores can be implemented using mutexes and busy wait-

ing, but this is inefficient.

8 Engineering Part IIA: 3F6 - Software Engineering and Design

Semaphores - the OS perspective

class Semaphore {

public:

void acquire();

void release();

private:
int remaining; //Initialized to 1 for mutexes

ThreadQueue q;

}

void Semaphore::acquire()

{
if (remaining > 0) {

remaining--;

} else {

put caller’s thread record on q;

Schedule next thread in Ready queue;

}
}

void Semaphore::release ()

{
if (q is empty) {

avail++;

} else {

Move thread from q to Ready

}
}

Access to remaining, q and Ready must be protectet on multi-

processor systems.

Concurrent Systems II 9

Monitors

class Semaphore {

public:

void acquire(){

m.lock();

if(remaining == 0)

more.wait(m);

remaining--;

m.unlock();
}

void release(){

m.lock();

remaning++;

more.signal();

m.unlock();
}

private:

int remaining;

Mutex m;

Signal more;

}

This will deadlock unless signals temporarily release the mutex.

This is an example of a monitor

Monitors are classes which have every method protected by a

lock. These are the synchronization primitive provided in Java.

10 Engineering Part IIA: 3F6 - Software Engineering and Design

Pipeline communication

Thread and processes are often set-up as pipelines with the out-

put of one is passed as input to the next. This can often simplify

design since:

• Synchronization is performed only on the pipe.

• No deadlocks if the pipeline does not double back.

Audio signal
capture

Feature
Extraction

Recognition

Sequence of samples

Sequence of vectors

Sequence of words

"When is the
 next flight ..."

Pipeline

Communication between threads uses bounded buffers.

Concurrent Systems II 11

Bounded Buffers

BufferProducer Consumer
put(x) y=get()

Assume x and y are of type Datum:

• Buffer is a bounded first in, first out queue. It can hold at

most N items of type Datum.

• Buffer has two principal operations:

1. put(x) store item x in buffer

2. get() return next item from buffer

• Buffer allows consumer and producer to proceed asynchronously

• Producer only has to stop when buffer is full

• Consumer only has to stop when buffer is empty

To implement such a buffer, the calls to put and get must be

mutually exclusive since they access a shared memory buffer.

When the buffer is full or empty, the caller must wait for an

appropriate notfull or notempty signal.

12 Engineering Part IIA: 3F6 - Software Engineering and Design

Implementation of the Buffer class using a Monitor:

class Buffer {
public:

void put(Datumx);
Datum get();

private:
const intsize = N;
Datum buf[size];
intinx,outx,used;
Signal notfull, notempty;
Semaphore lock;

}

void Buffer::put(Datumx) {

lock.enter();

while (used == size)
notfull.wait();

buf[inx] = x;
inx= (inx+1) % size;
++used;
notempty.send();

lock.leave();

}

Datum Buffer::get() {
Datum x;
lock.enter();

while (used == 0)
notempty.wait();

x = buf[outx];
outx= (outx+1) % size;
--used;
notfull.send();

lock.leave();
return x;

}

size

used
outx inx

Bounded Buffer

Concurrent Systems II 13

Message Passing

The use of bounded buffers to connect asynchronous threads is so

common that some systems provide a bounded buffer as the basic

primitive for communication then the buffer is called a mailbox.

mbox<messageType,size> mybox;

messageTypemsg= “Hello”;
mybox.send(msg);

messageTypemsg;
msg= mybox.receive();

type of message
to be stored in
mailbox

max messages
that can be
stored

• when mailbox is full - sender blocks

• when mailbox is empty - receiver blocks

Sometimes this can be a problem ...

14 Engineering Part IIA: 3F6 - Software Engineering and Design

Consider a thread that is processing messages from several sources:

X

m1

m2

m3
...
x = m1.receive(); process(x);
y = m2.receive(); process(y);
z = m3.receive(); process(z);
...

How can thread X avoid blocking on an empty mailbox whilst

other boxes have data ready for processing?

We could check how many messages a mailbox holds before call-

ing receive(), but this results in inefficient polling.

Concurrent Systems II 15

The Select Statement

Systems which have message passing as a built-in feature solve

the problem by providing a select statement:

select(m1, m2, m3) {

m1 =>

x = m1.receive(); process(x);

break;

m2 =>

y = m2.receive(); process(y);

break;

m3 =>

z = m3.receive(); process(z);

break;

}

If one or more mailboxes are nonempty, then one of the branches

is selected. Otherwise, the caller waits and selects the first mes-

sage to arrive.

16 Engineering Part IIA: 3F6 - Software Engineering and Design

Which concurrency mechanism is best?

All of the three approaches to handling mutual exclusion and

event notification are orthogonal. Given one you can implement

the others:

semaphores
and signals

monitors and
signals

message
passing

Semaphores and signals used to be maligned, but the expressive

power of languages such as C++ allows any desired mechanism

to built on top of any basic primitive.

Low-level synchronization is required where there is shared mem-

ory. Examples are inside multi-threaded code or inside an operat-

ing system. The largest shared memory machine has 1024 CPUs.

Messages easily generalize to large distributed systems where

messages are sent across a network. Most supercomputer soft-

ware uses message passing.

Concurrent Systems II 17

Summary

• Concurrency is essential for providing real-time interaction

with asynchronous external processes (eg humans, control

system, etc).

• Concurrency is essential for high performance computing.

• Unlike processes, threads share the same memory space and

thereby allow very efficient real-time operation.

• Safe communication between processes/threads requires ex-

plicit support:

– semaphores and signals

– monitors and signals

– message passing

• Traditionally semaphores have been criticised as being too

low level and error prone, however, object-oriented languages

such as C++ allow critical sections to be safely encapsulated.

• Message passing often simplifies concurrent code because it

reduces the number of shared writable resources.

