
3F6 - Software Engineering and Design

Handout 10

Distributed Systems I
With Markup

Ed Rosten

Contents

1. Distributed systems

2. Client-server architecture

3. CORBA

4. Interface Definition Language (IDL)

5. Interface inheritance

6. Upgrade and Maintenance

Copies of these notes plus additional materials relating to this course can be found at:
http://mi.eng.cam.ac.uk/~er258/teaching.

Distributed Systems I 1

Distributed Systems

Distributed Systems are systems where the processing is spread

over several computers. Virtually all large computer systems are

now distributed systems, and this approach brings many advan-

tages:

•More processing power

e.g. Grid computing, Google, seti@home

• Scalable

easy to grow and upgrade the system e.g. the world-wide

web, Google

• Resource sharing

e.g. printers, e-mail servers, databases

• Fault tolerance

errors in one part of the system do not necessarily affect the

rest of the system

• Simplifies software engineering

simplifies the design, implementation and maintenance of

naturally concurrent processes

2 Engineering Part IIA: 3F6 - Software Engineering and Design

Examples of Distributed Systems

• Distributed databases e.g. air-line reservation systems

• Banking systems

• Web-based systems

• Car engine management systems

• Computer operating systems

Note that there is not necessarily a one-one mapping between

the logical system as expressed by the software and the physical

system as implemented by the hardware.

• a physical processing unit can execute multiple programs

(processes) simultaneously

• a modern computer “chip” can contain multiple processing

units

• a computer motherboard can contain multiple computer “chips”

• a computer can contain multiple motherboards

A key aim of software engineering is to abstract the logical process

structure from the physical hardware.

Distributed Systems I 3

Case Study - Call Centre Automation

Consider a Call Centre automation system in which routine user

inquiries are handled automatically using a speech recogniser to

understand what the user is saying and a speech synthesiser to

allow the system to speak back to the user.

Call
Handling

Recog

Synth

Dialog
Mgr

Data-
base

Telephone
Network

Client Requirements:

• initial support for 4 simultaneous users

• capability to scale to 24 simultaneous users

• must provide 24x7 reliability

• must allow simple maintenance and upgrade of constituent

software components

4 Engineering Part IIA: 3F6 - Software Engineering and Design

Software Component Requirements:

Component Fixed Per Instance Load Implementation
Name Mem (MB) Mem (MB) (%CPU) Language

Dialog Manager 0 1 0.01 C++
Recogniser 40 20 0.15 C++
Synthesiser 1000 2 0.04 Java

Totals 1040 23 0.2

Note: 1cpu can support 4 users.

Two possible configurations to achieve 24+ simultaneous users:

Config A Config B

CPU # Insts Memory (Mb) # Insts Memory (Mb)

1 24 s 1048 5 rs 1150

2 6 r 160 5 rs 1150

3 6 r 160 5 rs 1150

4 6 r 160 5 rs 1150

5 6 r 160 5 rs 1150

6 24 dm 24 25 dm 25

r = Recogniser rs = Recogniser plus Synthesiser
s = Synthesiser dm = Dialog Manager

Note that keeping the DM on a separate CPU allows further

expansion by simply adding more cpus for syns and recs. A

looks best but if tight coupling between Rec and Syn (eg sharing

resource) then B is better

Distributed Systems I 5

A basic software design might be as follows

Recogniser

+init(l:Language)
+setBeam (beam:float)
+listen(a:Audio):Words

Synthesiser

+init(l:Language)
+talk(w:Words):Audio

Database

+query(w:Words):Words

Dialog

+connect(c:Channel)
+runDialog ()
+hangup()

rec

syn

db

1

1

1

Channel

- netInfo : NetworkInfo

+getAudio ():Audio
+putAudio (a:Audio)

1chan

Physical
connection to
telephone network

CallHandler

+callconnect (ni:NetworkInfo)
+hangup()

calls *

list<Dialog *> calls;
call = new Dialog();
chan = new Channel(ni);
call->connect(chan);
calls.push_back(call);

Words win,ans;
Audio in,out;
do {
 in = chan->getAudio();
 win = rec->listen(in);

ans =db->query(win);
 out = syn->talk(ans);

chan->putAudio(out);
} untilhangup;

Note that this design will meet the initial requirement for 4 si-

multaneous users. But how do we add the flexibility to provide

support for

• scaling to many simultaneous users

• providing 24x7 reliability

• interfacing software written in different languages

• upgrades to individual components

The answer is to design the Call Centre Automation as a dis-

tributed system.

6 Engineering Part IIA: 3F6 - Software Engineering and Design

Client-Server Architecture

The simplest relationship in a distributed system is the client-

server relationship. The server provides data and services to the

client.

Client Server

request

response

At the hardware level, the client and server are often located on

different computers.

At the software level, we require location transparency. This is

achieved using the Proxy Design Pattern.

CLIENT SERVER

↗
Dialog

Recogniser

+init(l:Language)
+setBeam (beam:float)
+listen(a:Audio):Words

recserver

1

RecogniserProxy

+ info : NetworkInfo

+init(l:Language)
+setBeam (beam:float)
+listen(a:Audio):Words

RecogniserServant

+init(l:Language)
+setBeam (beam:float)
+listen(a:Audio):Words

remote machine

Use network info
to locate the real server,
xfer audio to it and wait for
results to be returned

Actual implementation of
the recogniser 'listen'
operation

However, implementation of remote object management is com-

plex - Middleware can provide much of the support needed.

Distributed Systems I 7

CORBA

CORBA (Common Object Request Broker Architecture) is a set

of standards for middleware defined by the Object Management

Group (OMG), a consortium of over 500 companies, including

IBM, Sun, Hewlett-Packard, Oracle, Ford, Boeing and Xerox.

CORBA specifies standards for

• describing the interface that an application presents to the

network

• mapping that interface into C++, Java, Visual Basic and

many other languages

• using that network interface to communicate between pro-

grams

There many implementations of the CORBA standard available.

The 3F6 laboratory experiment uses omniORB, a freely-available

version for C++ and Python. It supports over 15 different plat-

forms, including Microsoft Windows, Mac OS X, Linux, and most

other forms of Unix.

8 Engineering Part IIA: 3F6 - Software Engineering and Design

Object Request Broker

The Object Request Broker (ORB)

eg 3F6 Lab PostIt Server eg NHS Medical Records

↘ ↙

Object Request Broker (ORB)

Object
Services

Application
Interfaces

Domain
Interfaces

eg Name Server −→

• enables communication between clients and objects

• provides location transparency

• provides access to a set of built-in object services

There are two classes of interfaces

• Domain interfaces - standards agreed by collaborating organ-

isations and registered with the OMG.

• Application interfaces - developed for specific applications,

interfaces are specific to each application.

Distributed Systems I 9

Proxies in CORBA

Object-oriented programs consist of linked objects calling meth-

ods on each other. For example, here object A is connected to

object B, and calling the method read on A results in the method

open being called on B:

A

+read()

B

+open()

b
B* b;

// ...

b->open();

In a distributed application, we might want these objects to live

on different computers. This would make calling B::open rather

complex.

CORBA provides a remote proxy mechanism which provides the

necessary location transparency.

It also makes programming simple by hiding the proxy class from

the programmer. In C++, instead of using standard pointer

references, CORBA provides smart pointers. These hide the

proxy class and provide built-in reference counting so that the

remote objects can be automatically deallocated when no longer

required.

10 Engineering Part IIA: 3F6 - Software Engineering and Design

A

+read()

B

+open()

B_Proxy

+open()

ORB ORB
Network

B_var b;

// ...

b->open();

Use my ORB
to contact
the remote
ORB to contact
the real B
object

b

Using this design pattern, A references B using a smart pointer b

(of type B_var).

Method calls via b-> are then directed to the proxy for B.

When A calls open on the B_Proxy object, this contacts the local

ORB, which determines where the real B object lives. The ORB

then makes a network connection to the ORB on B’s computer

and passes the request on to it. The remote ORB then contacts

the real B object, which services the request. The results (any

return values) are passed back to A via the same mechanism.

Special version of B *b;

↘ the real thing

stub

Distributed Systems I 11

The Interface Definition Language

Remote objects may be implemented in different programming

languages.

CORBA provides a language independent mechanism for speci-

fying an object’s interface called the Interface Definition Lan-

guage (IDL).

The basic structure of an IDL interface definition is as follows:

module ModName {

// define constants

const type ConstName = constant_expression;

// define types

typedef type Typename;

// define interfaces

interface ObjectName {

// define local consts and types

// define methods

returntype functionName(mode Typename arg, ...);

...

};

};

Apart from the need to specify the mode (in, out, inout),

the IDL is very similar to C++.

Mode allows efficient parameter xfer across network

12 Engineering Part IIA: 3F6 - Software Engineering and Design

IDL Type Specification

Basic types:

Type Min Bits Type Min Bits

(unsigned) short 16 float 32

(unsigned) long 16 double 64

char 8 octet 8

string – boolean 1 (T/F)

Strings are variable length.

Enumerations, fixed-size arrays and structures are supported ex-

actly as in C++

enum Colour {red, green, blue};

typedef short RGB[3];

struct Pixel {

RGB rgb;

short x; short y;

};

The IDL does not support pointers. Instead it provides se-

quences which can be used to define variable length arrays and

recursive data structures

struct TreeNode {

string nodeContents;

sequence<TreeNode> children;

};

has to be precise so that mixed language operation works properly

Distributed Systems I 13

Case Study - Remote Recogniser Object

In the Call Centre Automation system, the Recogniser is im-

plemented as a CORBA object to allow the design to be scaled

to support an increasing number of simultaneous users. In ad-

dition, the recogniser itself is supplied by a 3rd party supplier

called Epic. CORBA provides an effective mechanism for them

to integrate their product into larger systems.

module EpicV1 {

const long AudioMax = 100000; // max size of audio chunk

enum Lang {English, French, German, Chinese};

typedef short Audio[AudioMax];

typedef sequence<string> Words;

interface Recogniser {

void init(in Lang l);

// initialise ready for given language

void setBeam(in float beam);

// adjust the beam width to control the search

Words listen(in Audio a);

// invoke the recogniser to convert the segment of

// audio in a into a sequence of words

};

};

14 Engineering Part IIA: 3F6 - Software Engineering and Design

Interface Inheritance

As in C++, IDL interfaces can inherit from existing interfaces.

For example,

module People {

interface Person {

void init(in string name, in short age);

short getAge();

string getName();

};

interface Child : Person {

void init(in string name, in short age,

in string guardian);

string getGuardian();

};

};

Here the derived interface child redefines the init opera-

tion, inherits getAge and getName and adds a new operation

getMaidenName.

Distributed Systems I 15

Upgrade and Maintenance

A significant problem in Software Engineering is maintaining

software when constituent components are upgraded. Usually,

an upgrade will do two things:

1. add new features

2. fix existing bugs

For upgrades to be useful they should

• allow existing applications to continue to function correctly

and take advantage of bug fixes without recompilation or

changes to the client code.

• allow new applications to take advantage of the new features.

Using a derived interface solves both these problems: it ensures

backwards compatibility and makes it simple to specify exten-

sions.

16 Engineering Part IIA: 3F6 - Software Engineering and Design

Case Study - Recogniser Upgrade

Shortly after commissioning the first version of the Call Centre

Automation system using Epic V1, Epic decides to add a new

function called nextBest which when called after listen re-

turns the next best matching sequence of words. At the same

time, they fix some bugs and release a new version Epic V2.

Adding a derived interfaces allows this upgrade to be done safely

and efficiently:

module EpicV2 {

const long AudioMax = 100000; // max size of audio chunk

enum Lang {English, French, German, Chinese};

typedef short Audio[AudioMax];

typedef sequence<string> Words;

interface Recogniser {

// as before

};

interface Recogniser2 : Recogniser {

// this new interface supports all of the existing

// functionality - plus the following new function

Words nextBest();

// return next best word sequence

};

};
NB Original interface preserved but implementation improved, and

functionality extended

