
3F6 - Software Engineering and Design

Handout 1

Architecture of a Computer
With Markup

Ed Rosten

Contents

1. Course Aims

2. Basic Computer Architecture

3. Procedural Design

4. Data Structures

5. Invariants

6. Access Functions

7. Classes

Copies of these notes plus additional materials relating to this course can be found at:
http://mi.eng.cam.ac.uk/~er258/teaching

http://mi.eng.cam.ac.uk/~er258/teaching

Architecture of a Computer 1

Course Aims

This 16 lecture module aims to teach some of the key principles

of software engineering and design. It is aimed specifically at the

construction of engineering systems built by small teams of 5 to

20 people.

We will start with a low-level overview of what computers are

doing “close to the metal” and work our way up through object

oriented design techniques to system components and software

management.

Topics covered are:

Object Oriented Programming:

• Architecture of a computer (1 lecture)

How a program executes, the structure of memory and point-

ers in C and C++.

• Classes and C++ (2 lectures)

Introduction to object oriented programming in C++; moti-

vation, approach, language facilities.

• The Unified Modeling Language (1 lecture)

Using formal UML diagrams to express the architecture and

behaviour of software; and the role of these diagrams in soft-

ware design.

2 Engineering Part IIA: 3F6 - Software Engineering and Design

Software Design:

• Object Oriented Design (1 lecture)

How to turn a specification into a software design.

• Design Patterns (2 lectures)

Commonly recurring design problems and solutions.

• Refactoring (1 lecture)

Redesigning existing software to improve its design and to

incorporate new capabilities.

• User interface design (1 lecture)

Designing for the user, use cases and UI design patterns.

Software Systems:

• Distributed Systems (2 lectures)

Client-Server architectures and CORBA.

• Concurrent Systems (2 lectures)

Constructing systems with multiple processes/threads.

• Database Systems (1 lecture)

Database management systems, transaction processing, con-

currency control, check-pointing and recovery.

Management:

• Software Management (2 lectures)

How to manage the software construction process for small

engineering systems.

Architecture of a Computer 3

Books

C++: Effective Object-Oriented Software Construc-

tion,

Kayshav Dattatri, Prentice Hall, 1999

The Object-Oriented Thought Process,

Matt Weisfeld, 2nd Ed, Sams Publishing, 2004

Learning UML 2.0,

Russ Miles and Kim Hamilton, O’Reilly, 2006

Design Patterns: Elements of Reusable Object-Oriented

Software,

Erich Gamma et al, Addison-Wesley, 1998

Refactoring: Improving the Design of Existing Code,

Martin Fowler, Booch, Jacobson and Rumbaugh, 1999

User Interface Design for Programmers, Joel Spolsky,

Apress, 2001

Advanced CORBA Programming with C++,

Michi Henning and Steve Vinoski, Addison-Wesley, 1999

Code Complete, 2nd edition,

Steve McConnell, Microsoft Press, 2004

The C++ Programming Language, 3rd edition,

Bjarne Stroustrup, Addison-Wesley, 2004

4 Engineering Part IIA: 3F6 - Software Engineering and Design

Architecture of a Computer

GraphicsCPU

Memory Bridge

USB

Disk
PCIE
PCI

Emphasise that primary flow of information is between CPU and

memory. It fetches instructions, loads data, modifies it and writes

it back.

On modern PCs, the bridge is integrated with the CPU.

Architecture of a Computer 5

Memory (for 32 bit machines)

Can think of memory
as a long line of boxes

Each box contains 8 bits
and has a 32 bit address

00000000
00000001
00000002
00000003
00000004
00000005

FFFFFFFB
FFFFFFFC
FFFFFFFD
FFFFFFFE
FFFFFFFF

00

00

A1
09
28
31
FF

80
1A
99

01

00110001

Emphasise that

contents rep-

resent both

program (hi

mem) and data

(lo mem).

Show bytes

grouped to

make

a) 32-bit instr

b) 32-bit int.

Emphasise

memory as an

array

Note not all ar-

chitectures have

8 bit access.

6 Engineering Part IIA: 3F6 - Software Engineering and Design

Memory is used for two things:

• Data

• Program Instructions

Each memory location can only store a byte (usually an octet,

8 bits) which is only enough to represent a single character of a

string, so memory locations are often grouped together to store

larger quantities.

A group of 4 consecutive bytes is known as a Word (ie 32 bits)

and is enough to store:

• an integer 0 · · · 232 − 1

• an integer −231 · · · 231 − 1 (int)

• a single precision floating point number (float)

• a pointer (ie a memory address) (type *)

• a program instruction (on most architectures)

A group of 8 consecutive bytes is known as a double word or

“DWord” (ie 64 bits) and is enough to store a long int or a

double precision float.

The compiler usually makes sure that all 4 byte (or larger) quan-

tities start at an address that is divisible by 4.

Architecture of a Computer 7

Pointers

In C++ (or C) it is possible to create variables that are pointers

to memory locations.

When the programmer writes int x=10;

The compiler sets aside 4 bytes to store the value of x and writes

the value 10 there

When the programmer writes int *y = &x;

The compiler sets aside 4 bytes to store the value of y which is

the address of an integer and writes the address of x there.

Arrays are also represented as pointers.

When the programmer writes int z[40];

The compiler sets aside 4*40 = 160 bytes to store 40 integers and

another 4 bytes to store z which is the address of the first integer

in the array.

8 Engineering Part IIA: 3F6 - Software Engineering and Design

0000000A00100088

00100080
00100084 00100088

000FF000
000FF004
000FF008
000FF00C
000FF010
000FF014
000FF018

000FF000

z[0]
z[1]
z[2]
z[3]
z[4]
z[5]
z[6]

x

y
z

Draw arrows to show that y points to x, and z points to start of

array.

Architecture of a Computer 9

Program in Memory

When the compiler sees

int x = 10;

int *y = &x;

it compiles the C code into machine assembly instructions:

movl $10, -8(%ebp)

leal -8(%ebp), %eax

movl %eax, -4(%ebp)

These machine assembly instructions then have an exact repre-

sentation as numeric codes:

Address Contents Instructions

0000: c7 45 f8 0a 00 00 00 movl $0xa,-0x8(%ebp)

0007: 8d 45 f8 lea -0x8(%ebp),%eax

000a: 89 45 fc mov %eax,-0x4(%ebp)

x86 asm and machine code. $10 appears as bytes 3–6

Because this program is in memory just like data, it is possible

to have pointers which point to executable program segments.

Hence indirect jumps via pointers. Very important point

10 Engineering Part IIA: 3F6 - Software Engineering and Design

Procedural Design

(or C++ as it’s been taught to you so far)

Procedural programming is concerned with data structures and

algorithms. The thought process used to design software in this

approach is something like:

1. What has to be done in what order to achieve the task?

2. What data structures will this require?

3. What are the algorithms that will act on this data?

4. How can these algorithms be expressed as a hierarchy of func-

tions?

Function-oriented design has been practiced since program-

ming began, and there is a large body of design methods based on

functional decomposition (aka stepwise refinement or top-down

design).

However, while the functions can hide the details of the algo-

rithms, the data structures are left exposed. Functions have free

access to the data and this can cause problems.

Especially in large systems built by teams.

Architecture of a Computer 11

Why is procedural design still used?

Object-oriented approaches now dominate large system design.

But procedural design is still important:

• In systems with minimal state (e.g. an ATM), or which can

be implemented by parameter passing, object-oriented ap-

proaches offer no significant advantages, and may even be

less efficient.

• Many organisations have standards and methods based on

functional decomposition.

• There are an enormous number of systems which have been

developed using a procedural approach, and need to be main-

tained (e.g. The HTK Toolkit).

• In many cases people incorrectly assume procedural design

yields smaller, faster code.

• The C standard is much simpler than the C++ standard so

there are many more standards-compliant compilers for C.

• You can do OO in C with some effort (e.g. Linux kernel).

• Complex algorithms within a large system need a functional

decomposition embedded within an object-oriented system.

Emphasise the last point - procedural design is appropriate for

small systems and complex components within large systems.

12 Engineering Part IIA: 3F6 - Software Engineering and Design

Data structures

In addition to the procedural design, it is also necessary to struc-

ture the data on which these algorithms will operate. Procedural

programming languages like C provide several tools to assist in

this.

Primitive data types: int, char, float, double, etc.

Arrays of data: int[100], "a string", etc.

It is also often convenient to collect several pieces of data together

using struct’s. These are chunks of data that belong together

because they contain different parts of the same conceptual en-

tity.

For example:

struct date {

int day;

int month;

int year;

};

struct image {

int width;

int height;

char *pixels;

};

Note that struct’s are examples of user defined types.

date d;

d.day=1;

image img;

int size;

img.width=100; img.height=50;

size=img.width*img.height;

img.pixels = malloc(size);

for (i=0; i<size; i++)

img.pixels[i]=0;

Architecture of a Computer 13

Invariants

Both of these data structures pull information together into mean-

ingful clusters. Instances of these data structures can be created

and have values assigned to them. However, structures such

as date and image typically have additional requirements that

must be maintained.

Examples:

• image img

img.pixels must point to an allocated chunk of memory

big enough to hold img.width*img.height pixels. If the

height or width are changed, then the memory must be re-

sized and realigned.

• date today

certain constraints must hold, e.g

– today.month > 0

– today.month < 13

– today.day > 0

– today.day < 32 (... or 29 or 31 or 30 depending on the

month and year).

These requirements are called Invariants.

14 Engineering Part IIA: 3F6 - Software Engineering and Design

What can go wrong?

Every time that a struct is used, the programmer must ensure

that the invariants are maintained.

Y ou WILL make a mistake

For example, someone might load an image from disk without

checking to see if the chunk of memory pointed to by pixels is

large enough.

Or they might allocate a new chunk of memory for the image

without disposing of the old chunk and so creating a memory

leak.

Or someone might want to schedule a reminder in a diary appli-

cation for one month in the future using:

reminder.day = today.day;

reminder.year = today.year;

reminder.month = today.month+1;

if(reminder.month == 13) {

reminder.month=1;

reminder.year++;

}

This looks OK - but what if today is 31/1/2007? We need a way

of forcing programmers to obey the invariants. 31/1/2007 + 1

month → 31/2/2007 !!

Architecture of a Computer 15

Access Functions

One way of doing this (for example in C) is to provide access

functions. Instead of using the above code fragment, a program-

mer is expected to only use special functions that guarantee to

respect the invariants. For example,

add_a_month(today,&reminder);

If all programmers use only these access functions (and all the

functions are implemented correctly) then date structures will

always be valid. However, a large software system will contain a

very large number of such rules.

Rule 5967:

date structs must only be modified using
functions provided in "date_access.h"

This is not really an adequate solution. We really need to do two

things:

1. Provide a correct means of access to the data

2. Make this the only means of access to the data

The above approach only achieves the first of these.

16 Engineering Part IIA: 3F6 - Software Engineering and Design

Classes

Object-oriented programming enforces correct access to struc-

tures by using a programming construct called a class.

Classes are like structs but they contain functions and private

data. This means that objects of a class provide services as well

as containing data. This approach provides two key benefits:

Encapsulation

The class embodies functions as well as data. The functions give

access to the data while maintaining invariants.

Data hiding

The raw data can be made inaccessible from outside the class so

the programmer must use the access functions.

Classes have:

1) data (usually private)

2) member functions (usually public) to

- access the data

- modify the data

A class definition specifies both the data and member functions,

thus defining the class interface. In C++ classes look like:

Architecture of a Computer 17

class Date {

public:

int get_day();

int get_month();

int get_year();

void set_date(int d, int m, int y);

void add_days(int d);

private:

int day; |

int month; | int seconds;

int year; |

};

class Image {

public:

int get_width();

...

char get_pixel(int x, int y);

void set_pixel(int x, int y, char value);

private:

int width;

int height;

char * pixels;

};

18 Engineering Part IIA: 3F6 - Software Engineering and Design

Programming with Classes

Objects are user-defined types. So we can create instances of a

particular class (called an object) by simply declaring variables

of that type. For example,

Date today;

This creates an object called today of type Date just like creating

a variable of any type you’re used to, eg as in int i; float x;

etc.

We can use the functions supplied by a class to access the objects

we create. Eg.

today.set_date(20,1,2011);

sets the date of the object today to ”1st November 2001” and

if (today.get_day() == 1) {

start_new_month();

}

Note that we can also create classes dynamically and access them

via pointers

Date *p;

p = new Date();

p->set_date(1,1,2008);

