Engineering Tripos Part ITA THIRD YEAR

Paper 3F6: Software Engineering and Design
Relational Databases, UI Design and Software Management

Examples Paper 4

Straightforward questions are marked
Tripos standard (but not necessarily Tripos length) questions are marked *

Relational Databases

1. % The Engineering department has decided to use a database to keep track of
which practicals students have completed. When a practical has been signed
off, the student is entered into the database along with the title of the practical
completed. The design of the table ‘completed=(student,lab)’ is:

completed
student lab
Murphy | Networking over RS232
Murphy | Wireless networking
Murphy | Image processing on FPGAs
Libby Wireless networking
Libby Image processing on FPGAs
Libby FPGA design in verilog
Cook FPGA design in verilog
Cook Welded steel structures

The course is very modular and students can choose any modules. In order
to pass a module, students must complete all labs in that module. If only
some labs within a module are taken, then those labs will not contribute to
the student’s final mark.

Quite a number of students end up taking labs which never contribute to the
final mark. Therefore a column has been added to the database to indicate
whether or not the module associated with a particular lab has been completed.
The new design of the table is as follows:

completed
student lab module_completed
Murphy | Networking over RS232 yes
Murphy | Wireless networking yes
Murphy | Image processing on FPGAs | no
Libby Wireless networking no
Libby Image processing on FPGAs | yes
Libby FPGA design in verilog yes
Cook FPGA design in verilog no
Cook Welded steel structures no

The director of studies can now find which students have labs which do not
contribute to their final mark with a query such as:

Hstudent (O-module,completed: “no” (Completed))

When a student completes all labs in a module, the “module_completed” at-
tribute is changed for that student. The C+4++ code for signing off a student
is below. Assume that the do_sql() function performs SQL queries on the
relevant database and returns a std: :vector of tuples.

void insert_completed_lab(string student, string lab)

{

//Do query like INSERT INTO students VALUES (’Gibson’, ’Welded steel structures’, ’no’)
do_sql("INSERT INTO students VALUES (°" + student + "’, ’" + lab + "’, ’no’)");

vector<tuple> r; //Returned tuples from an SQL query

//Search for the two networking modules for student

//The two modules are "Networking over RS232" and "Wireless Networking"

r = do_sql("SELECT * FROM students WHERE student=’" + student + "’ AND
lab IN (’Networking over RS232’, ’Wireless Networking’)");

//If the student has done all of them, then update the module_completed attribute
if(r.size() == 2)
do_sql("UPDATE course SET module_completed=’yes’ WHERE student=’" + student + "’ AND
lab IN (’Networking over RS232’, ’Wireless Networking’)");

//Do the same for the FPGA course, "Image processing on FPGAs" and "FPGA design in verilog"
r = do_sql("SELECT * FROM students WHERE student=’" + student + "’ AND
lab IN (’Image processing on FPGAs’, ’FPGA design in verilog’)");
if(r.size() == 2)
do_sql ("UPDATE course SET module_completed=’yes’ WHERE student=’" + student + "’ AND
lab IN (’Image processing on FPGAs’, ’FPGA design in verilog’)");

//Do the same for the structures course, "Welded steel structures" and "Earth banks"
r = do_sql("SELECT * FROM students WHERE student=’" + student + "’ AND
lab IN (’Welded steel structures’, ’Earth banks’)");
if(r.size() == 2)
do_sql("UPDATE course SET module_completed=’yes’ WHERE student=’" + student + "’ AND
lab IN (’Welded steel structures’, ’Earth banks’)");

(a) Is the ‘completed’ relation well normalized? You may wish to consider
whether any data is duplicated and if it is possible to insert inconsistent
information into the database. Also discuss the design in terms of how
easy it is to extract useful information from the database and how easy
it is to alter modules without introducing bugs.

(b) Design a well normalized database schema for the task which does not
rely on a complex function for inserting entries.

(¢) Write down in relational algebra and SQL the query to find which modules
students are enrolled in.

(d) Hence write down in relational algebra and SQL the query to find the list
of labs students will need to have done in order to complete their enrolled
modules. You will need to look up how to use brackets in SQL.

(e) Hence write down in relational algebra and SQL the query to find which
students have labs which do not contribute to their final mark. The query
should also list the offending labs.

(f) Databases tend to deal with selects of selects rather inefficiently. Ma-
nipulate the expression in the previous answer so that it only needs one
select statement.

Note that if you join a table with itself the result has ambiguous attribute
names. In relational algebra, the phewname(relation) operator can be used
to temporarily rename tables in order to avoid ambiguity. In SQL, the
AS clause is used, for example, to get all possible pairings of students
including self pairings:
SELECT DISTINCT completed.student, tmp.student FROM completed, completed AS tmp;

(g) Write a query to find all students who have not done a lab on the net-
working course.

(h) Write a query to find all students who have completed the FPGA course.

User Interface Design

2. You are a member of a team designing a web interface for an internet banking
service where each client has two accounts: a current account and a savings
account. Assuming that the user has logged-in and passed all security checks,
write a specification for each of the following use cases:

(a) transfer £100 from the current account to the savings account
(b) pay a bill of £36.50 to BT plec, customer number EA3482828
(c) close all accounts and transfer any outstanding balance to an account at

another bank.

3. A prototype of the internet banking system described in Q2 has been imple-
mented:

(a) describe how you would conduct a usability test?

(b) what metrics would you use and how would you measure them?

Software Management

4. % As a member of a code review team you are supplied with the information
shown in Fig. 1.

(a) What is the difference between a code inspection and a walk-through?

(b) List four distinct cases that should be considered when reviewing the
operation of the insert function.

(c) Perform a walk-through of the insert function and write a brief report
describing your findings.

(d) If the integer numbers ¢ were known to lie in the range 0 < i < N, suggest
how the insert function could be simplified?

“The supplied C code fragment is intended to implement a linked list of
integers stored in ascending order. Fach element of the list is a struct
of type Item holding the integer value, a pointer pred to the previous
element, if any, and a pointer succ to the succeeding element, if any. The
variable head points to the first element in the list, and tail points to
the last element. Initially, both head and tail are NULL. The function
insert is intended to insert its argument x into the list. If x is already in
the list, insert should do nothing.”

struct Item {

int value; // the integer value
Item *succ; // succeeding value
Item *pred; // preceding value

};

Item *head, *tail; // Head and Tail of List

// Create a new item and return a pointer to it
Item* NewItem(int value, Item *succ, Item *pred);

// Insert x into linked list
void insert(int x)

{
Item *p = head , *q;
if(1p) {
head = tail = NewItem(x,NULL,NULL);
Yelse if (x>tail->value)q{
tail->succ = NewItem(x,tail,NULL);
tail = tail->succ;
}elsed{
while (x > p->value) p++;
if (x==p->value) return;
q = NewItem(x,p,p—>pred);
p—>pred = q;
}
}

Figure 1: The insert function

5. The C++ function below claims to efficiently locate a specific integer value
in a large array of integers, provided that the array elements are stored in
ascending order.

// Binary search routine:

// the elements of al[i] i=1..N are stored in sort order.
// return index i of array element ali] ==

// return 0 if not found

int binary_search(int *a, int x, int N)

{
int mid,low = 1, high = N;
al0] = x;
do {
mid = (low+high) / 2;
if (low>high)
mid = O;
else if (a[mid]<x)
low = mid + 1;
else
high = mid - 1;
} while (a[mid] !'= x);
return mid;
}

Assuming that N=100000, list the specific cases that should be covered when
testing this routine and design a test harness suitable for use as a regression
test.

Ed Rosten
March 2011
Tom Drummond
February 2010

