
Engineering Tripos Part IIA THIRD YEAR

Paper 3F6: Software Engineering and Design

Distributed Systems Design

Examples Paper 3

Straightforward questions are marked †
Tripos standard (but not necessarily Tripos length) questions are marked ∗

CORBA

1. A stocks trading broker wishes to provide an online service to their customers.
The service must provide customers with the facility to

• obtain the price of any given share identified by its share code

• to trade (buy or sell) a number of shares

• obtain the balance of their cash account with the brokers

The server must check that the customer does not sell shares they do not own
and that they do not buy shares they do not have money for. The service is
to be implemented using CORBA.

(a) Design an interface for the trading system, showing your design as an idl

file.

(b) The company now wishes to extend the system so that the server can
give statistical information about shares. Customers must now be able
to:

• obtain the average price for a share over the previous n days (where
n is given by the user).

• obtain the price to earnings ratio for a share.

Give a new idl file which shows how these facilities can be incorporated
into the system without breaking programs that only use (and know
about) the existing facilities.

(c) Many customers will be using the broker’s facilities concurrently.

i. Identify the information that must be stored on the server for each
customer.

ii. Describe how the factory design pattern can be used to keep cus-
tomers’ transactions separate, drawing a UML diagram to show the
modified design.

1



2. ∗ A virtual tourism project wishes to offer users the capability to obtain a 3D
model of a tourist attraction from a server.

As the user moves through the virtual world defined by the model, they are
presented with hot-spots at certain locations. Clicking on these hot-spots
causes media such as an image, movie or sound clip to be retrieved from the
server and presented to the user.

(a) Design an interface for this system, showing your answer as an idl file.
Assume that there is a pre-defined Model datatype, which stores a 3D
model, and Image, Movie and Soundclip types for the media.

(b) It is found that the model takes a long time to download. In order to
reduce the time that users have to wait before viewing, the model is to
be broken down into zones which can be obtained from the server as they
are needed. The 3D model for a zone now defines which zones adjoin the
current zone, and when a new zone will need to be loaded. When the
user approaches the boundary of the current zone, their client software
can thus request the next zone from the server.

Show what changes to the interface are required to support this new
scheme.

(c) The popularity of the system grows, and the main server becomes over-
loaded. To resolve this, the design needs changing to allow zones and
their associated media to be hosted on different CORBA servers else-
where in the world. Write a new idl file showing a design for this revised
system.

(d) Some zones become very popular and the servers that provide those zones
become overloaded. What could be done to allow load-balancing, so that
process of requesting a zone file from a server allows the server to delegate
the responsibility for supplying that zone data to any one of multiple
computers?

(e) Currently, each user moves around in the virtual world in isolation from
every other user. What would be required to make it possible to see other
users who are visiting the same zone and to send messages to them?

Transaction Processing

3. (a) Explain what is meant by an optimistic and a pessimistic concurrency
control scheme.

(b) State whether an optimistic or a pessimistic policy is likely to produce a
more efficient system in each of the following cases:

i. A flight booking system;

ii. A police criminal database;

iii. A database maintaining patient records.

In each case, give reasons for your answer.

2



4. ∗ The following list records a sequence of actions invoked by a set of 12 transac-
tions, T1 . . . T12 operating on database accounts A, B, . . . , H. Each operation
Q.read must acquire a shared lock Q.S on account Q, and each write opera-
tion Q.write must acquire an exclusive lock Q.X on account Q. Assume that
all locks once acquired are held until the transaction either commits or aborts.

time transaction action time transaction action
1 T1 A.read 19 T9 G.write

2 T2 B.read 20 T8 E.read

3 T1 C.read 21 T7 Commit

4 T4 D.read 22 T9 H.read

5 T5 A.read 23 T3 G.read

6 T2 E.read 24 T10 A.read

7 T2 E.write 25 T9 H.write

8 T3 F.read 26 T6 Commit

9 T2 F.read 27 T11 C.read

10 T5 A.write 28 T12 D.read

11 T1 Commit 29 T12 C.read

12 T6 A.read 30 T2 F.write

13 T5 Abort 31 T11 C.write

14 T6 C.read 32 T12 A.read

15 T6 C.write 33 T10 A.write

16 T7 G.read 34 T12 D.write

17 T8 H.read 35 T4 G.read

18 T9 G.read 36

(a) Verify that the resource allocation graph shown below accurately repre-
sents the state of resource allocation after step 10 just before T1 commits.

1

T1


T5


A.S
 10
 A.X


5


C.S
3


T4
 D.S
4


T2


B.S

2


E.S
6
 E.X
7


10


F.S


9


T3
 8


Resource graph after step 10


Allocated


Requested


(b) construct a resource allocation graph for each of the remaining 4 phases
of processing i.e. upto steps 12, 20, 25 and 35.

(c) Identify any deadlocks that occur.

3



Concurrent Systems

5. The following code illustrates an attempted solution to the mutual exclu-
sion problem which does not rely on operating system primitives such as
semaphores:

bool c1 = true;

bool c2 = true;

void thread1 {
while(true) {

while(!c2);

c1 = false;

critical_section

c1 = true;

non_critical_section

}
}

void thread2 {
while(true) {

while(!c1);

c2 = false;

critical_section

c2 = true;

non_critical_section

}
}

where the functions thread1 and thread2 are executed as parallel threads.

(a) In what way does this fail to provide a satisfactory solution?

(b) Does changing the body of both threads to the following form (by swap-
ping the first two lines after each while(true) line as shown below) result
in a satisfactory solution? Explain your reasoning.

while(true) {
cN = false;

while(!cM);

critical_section

cN = true;

non_critical_section

}

4



6. ∗ An abstract problem used in the analysis of concurrent algorithms is that of
the Dining Philosophers. In a room there is a round table with a never-ending
supply of food in the centre and five plates and five forks arranged as shown
below.

There are five philosophers whose life is a cycle described by

void philosopher(int philosopherID)

{

while(true)

{

think();

eat();

}

}

Before he can eat, a philosopher must enter the room, sit at a free plate and
pick up the two forks adjacent to it. Once finished, he replaces the forks and
leaves the room.

Unlike the Boolean semaphores used in lectures, an integer semaphore s has
an associated count N which is used to control access to N units of resource.
Each function call secure(s) will reduce the count by one until it is zero, at
which point the calling thread is suspended. Each function call release(s)
will either cause a waiting thread to be resumed, or if there are none, the count
is incremented by one.

Using the integer semaphores defined by

integer_semaphore sfork[5]; // i.e. one for each fork on the table

integer_semaphore sroom;

modify the philosopher() function so that the philosophers can eat; ensure
mutual exclusion (i.e. no two philosophers are trying to use the same fork at
the same time); avoid deadlock (all the philosophers are waiting for something

5



to happen); and avoid starvation (one or more of the philosophers starve to
death). Define the initial count to be given to each semaphore.

7. A simple Boolean semaphore object is used to control access to a critical
section as in,

semaphore s;

s.enter();

critical_section

s.leave();

Due to poor system design and a complex nested call structure, it was found
that in some parts of the system, a thread was attempting to reuse the same
semaphore from within the critical section, i.e. it was attempting to execute:

semaphore s;

s.enter()

...

s.enter();

critical_section

s.leave();

...

s.leave();

and as a result, the system deadlocked on the second call to s.enter(). Since
the nested calls to s.enter() ... s.leave() are logically harmless, it was
considered simpler to define a new semaphore object which allowed this be-
haviour, rather than redesign the system. Design a new semaphore object
which provides a wrapper around the existing semaphore object, and which
makes the above behaviour harmless.

Tom Drummond
February 2010

6


