#include <TooN/toon.h>
Public Member Functions | |
Constructors | |
Vector () | |
Vector (int size_in) | |
Vector (Precision *data) | |
Vector (Precision *data, int size_in) | |
Vector (Precision *data_in, int size_in, int stride_in, Internal::Slicing) | |
template<class Op > | |
Vector (const Operator< Op > &op) | |
template<int Size2, typename Precision2 , typename Base2 > | |
Vector (const Vector< Size2, Precision2, Base2 > &from) | |
Accessing elements | |
Precision & | operator[] (int i) |
const Precision & | operator[] (int i) const |
Assignment | |
Vector & | operator= (const Vector &from) |
template<int Size2, typename Precision2 , typename Base2 > | |
Vector< Size, Precision, Base > & | operator= (const Vector< Size2, Precision2, Base2 > &from) |
template<class Op > | |
Vector & | operator= (const Operator< Op > &op) |
Operators on the vector | |
Vector & | operator/= (const Precision &rhs) |
Vector & | operator*= (const Precision &rhs) |
template<int Size2, class Precision2 , class Base2 > | |
Vector & | operator+= (const Vector< Size2, Precision2, Base2 > &rhs) |
template<class Op > | |
Vector & | operator+= (const Operator< Op > &op) |
template<class Op > | |
Vector & | operator-= (const Operator< Op > &op) |
template<int Size2, class Precision2 , class Base2 > | |
Vector & | operator-= (const Vector< Size2, Precision2, Base2 > &rhs) |
Comparison | |
template<int Size2, class Precision2 , class Base2 > | |
bool | operator== (const Vector< Size2, Precision2, Base2 > &rhs) |
template<int Size2, class Precision2 , class Base2 > | |
bool | operator!= (const Vector< Size2, Precision2, Base2 > &rhs) |
Misc | |
Vector & | ref () |
int | size () const |
void | resize (int s) |
Precision * | get_data_ptr () |
Reshaping, sub-vectors and matrices | |
Matrix< 1, Size, Precision > | as_row () |
Matrix< Size, 1, Precision > | as_col () |
DiagonalMatrix< Size, Precision > | as_diagonal () |
template<Start , Length > | |
const Vector< Length, Precision > & | slice () const |
template<Start , Length > | |
Vector< Length, Precision > & | slice () |
template<Start , Length > | |
const Vector< Length, Precision > & | slice () const |
template<Start , Length > | |
Vector< Length, Precision > & | slice () |
Support is provided for all the usual vector operations:
See individual member function documentation for examples of usage.
To create a 3-dimensional vector, use:
Vector<3> v;
and to create a vector of some other dimensionality just replace 3 with the positive integer of your choice, or some expression which the compiler can evaluate to an integer at compile time.
The preferred way of initialising a vector is to use makeVector. The makeVector function constructs a static vector initialised to the size and the contents of the comma-separated list of argments. The makeVector vectors are real Vectors and so can be used anywhere where a vector is needed, not just in initialisations. For example
// Create a vector initialised to [1 2 3]; Vector<3> v = makeVector(1, 2, 3); // Calculate the dot product with the vector [4 0 6] double dot = v * makeVector(4, 0, 6);
Because the make_Vector syntax creates actual vectors, compile-time checking is done to ensure that all vectors defined in this way have the correct number of elements.
Vector<> v(size);
Vector<> is actually a synonym for Vector<Dynamic> which is Vector<-1> being a template specialisation of Vector<N> with a special implementation that allows the size to be determined at runtime.
v1*v2
means the dot product). This means that sometimes you have to be careful to include prarentheses since it is possible to write obscure stuff like
Vector<4> v4 = v1 * v2 * v3;
which in the absence of any extra parentheses means 'compute the dot product between v1
and v2
and then multiply v3
by this scalar and assign to v4
'.
If the row-column distinction is important, then vectors can be turned into matrices with one row or column by using as_row() or as_col():
double d[3] = {1,2,3}; Vector<3> v(d); Matrix<3,3> M = v.as_col() * v.as_row(); // creates a symmetric rank 1 matrix from v
Vector | ( | ) |
Default constructor for vectors.
For fixed-sized vectors, this does nothing, i.e. does not guarantee to initialise the vector to any particular values. For dynamically sized vectors, this sets the vector to have a length of 0 which renders the vector useless because vectors can't be resized
Vector | ( | int | size_in | ) | [explicit] |
Constructor for dynamically-size vectors.
This can also be used for statically sized vectors in which case the argument is ignored. The values of the vector are uninitialised
Vector | ( | Precision * | data | ) | [explicit] |
Constructor used when constructing a vector which references other data, e.g.
double[] d = {1,2,3};
Vector<3,double,Reference> v(d);
Vector | ( | Precision * | data, | |
int | size_in | |||
) |
Constructor used when constructing a dynamic vector which references other data, e.g.
double[] d = {1,2,3};
Vector<Dynamic,double,Reference> v(d,3);
Vector | ( | Precision * | data_in, | |
int | size_in, | |||
int | stride_in, | |||
Internal::Slicing | ||||
) |
internal constructor
Vector | ( | const Operator< Op > & | op | ) |
construction from Operator object
This is used to implement return value optimisation for vectors created from the product of a matrix and a vector, or another object like Ones
Precision& operator[] | ( | int | i | ) |
access an element of the vector
can be used as an l-value ie
Vector<3> v; v[0] = 10;
const Precision& operator[] | ( | int | i | ) | const |
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
operator = another Vector
Vector& operator= | ( | const Operator< Op > & | op | ) |
assignment from an Operator object
Vector& operator/= | ( | const Precision & | rhs | ) |
divide this vector by a constant
Vector& operator*= | ( | const Precision & | rhs | ) |
multiply this vector by a constant
add another vector onto this one
Vector& operator+= | ( | const Operator< Op > & | op | ) |
subtract another vector from this one
bool operator== | ( | const Vector< Size2, Precision2, Base2 > & | rhs | ) |
Test for equality with another vector.
bool operator!= | ( | const Vector< Size2, Precision2, Base2 > & | rhs | ) |
Test for inequality with another vector.
Vector& ref | ( | ) |
return me as a non const reference - useful for temporaries
int size | ( | ) | const |
What is the size of this vector?
Referenced by WLS< Size, Precision >::add_prior(), SO3< P >::adjoint(), SE3< Precision >::adjoint(), LU< Size, Precision >::backsub(), Cholesky< Size, Precision >::backsub(), TooN::cross_product_matrix(), SVD< Size, Size, Precision >::determinant(), SO3< Precision >::exp(), SL< N, Precision >::exp(), TooN::Fill(), TooN::gaussian_elimination(), DownhillSimplex< N, Precision >::get_best(), SymEigen< Size, Precision >::get_determinant(), SymEigen< Size, Precision >::get_inv_diag(), SymEigen< Size, Precision >::get_isqrtm(), SymEigen< Size, Precision >::get_sqrtm(), DownhillSimplex< N, Precision >::get_worst(), SymEigen< Size, Precision >::is_negdef(), SymEigen< Size, Precision >::is_posdef(), TooN::isfinite(), TooN::isnan(), TooN::numerical_gradient(), TooN::numerical_gradient_with_errors(), TooN::numerical_hessian(), TooN::numerical_hessian_with_errors(), Vector< Vertices, Precision >::operator!=(), Vector< Vertices, Precision >::operator*=(), Vector< Vertices, Precision >::operator+=(), Vector< Vertices, Precision >::operator-=(), Vector< Vertices, Precision >::operator/=(), Vector< Vertices, Precision >::operator=(), Vector< Vertices, Precision >::operator==(), TooN::project(), DownhillSimplex< N, Precision >::restart(), SO3< P >::SO3(), SE3< Precision >::trinvadjoint(), and TooN::unproject().
void resize | ( | int | s | ) |
Resize the vector.
This is only provided if the vector is declared as Resizable. Existing elements are retained, new elements are uninitialized. Resizing has the same efficiency guarantees as std::vector
.
s | The new size. |
Precision* get_data_ptr | ( | ) |
Return a pointer to the first element of the vector.
This method is only provided for non-slice vectors, i.e. a subset of the cases where the memory is guaranteed to be contiguous.
Matrix<1, Size, Precision> as_row | ( | ) |
Convert this vector into a 1-by-Size matrix, i.e.
a matrix which has this vector as its only row.
Vector<3> a = makeVector(1,2,3);
Matrix<1,3> m = a.as_row(); // now m = [1 2 3]
Matrix<Size, 1, Precision> as_col | ( | ) |
Convert this vector into a Size-by-1 matrix, i.e.
a matrix which has this vector as its only column.
Vector<3> a = makeVector(1,2,3);
Matrix<3,1> m = a.as_col(); // now m = [1 2 3]'
DiagonalMatrix<Size,Precision> as_diagonal | ( | ) |
Convert this vector into a Diagonal Size-by-Size matrix, i.e.
a matrix which is zero everywhere except on the diagonal and the diagonal contains the values from this vector
Vector<3> v = makeVector(1,2,3);
Vector<3> v2 = makeVector(2,3,4);
Vector<3> v3 = v.as_diagonal() * v2; // now v3 = (2,6,12)
const Vector<Length,Precision>& slice | ( | ) | const |
Extract a sub-vector.
The vector extracted will be begin at element Start and will contain the next Length elements.
Vector<5> a = makeVector(1,2,3,4,5);
Extract the three elements starting from element 2
Vector<3> b = a.slice<2,3>(); /// b = [3 4 5]
Vector<Length,Precision>& slice | ( | ) |
Extract a sub-vector.
The vector extracted will be begin at element Start and will contain the next Length elements. This version can be used as an l-value as well as an r-value
Vector<5> a = makeVector(1,2,3,4,5); Vector<2> b = makeVector(8,9); // replace the two elements starting from element 1 with b a.slice<1, 2>() = b; /// now a = [1 8 9 4 5]
const Vector<Length,Precision>& slice | ( | ) | const |
Extract a sub-vector with runtime parameters.
The vector extracted will be begin at element start and will contain the next length elements.
Vector<5> a = makeVector(1,2,3,4,5);
Extract the three elements starting from element 2
Vector<> b = a.slice(2,3); /// b = [3 4 5]
Vector<Length,Precision>& slice | ( | ) |
Extract a sub-vector with runtime parameters, which can be used as an l-value.
The vector extracted will be begin at element start and will contain the next length elements.
Vector<5> a = makeVector(1,2,3,4,5);
Extract the three elements starting from element 2
a.slice(2,3)[0] = 17; /// a -> [1 2 17 4 5]